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Preface

The introductory noncalculus physics course at most colleges and universities
is a two-semester survey of classical topics (i.e., roughly pre-20th century
ideas) capped off with selected materials from what’s called modern physics.
Schaum’s Outline of College Physics was designed to complement just such a
course, whether given in high school or college. The requisite mathematical
knowledge includes basic algebra, some trigonometry, and a bit of vector
analysis, much of which will be discussed as needed, and can be learned as
the reader progresses through the book. There are several appendixes for
those who wish to review these subjects.

The main focus of this text is to teach problem solving. Everyone who has
ever taught physics has heard the all-too-common student lament, “I
understand everything; I just can’t do the problems.” Nonetheless most
professors believe that doing problems is crucial to understanding physics.
Like playing the piano, one must learn the basics, the theory, and then
practice, practice, practice. A single missed note in a sonata may be
overlooked; a single error in a calculation, however, will usually propagate
throughout the entire analysis, producing a wrong answer. A teacher, even a
great teacher, can only guide the learning process; the student must, on
his/her own, master the material by studying problem solving by studying
how problems of each type are analyzed. It’s part of the process to make
mistakes, discover those mistakes, correct them, and learn to avoid them, all
at home and not in class on an exam. That’s what this book is all about.

In this 12th edition, much effort has gone into increasing pedagogical
effectiveness. I’ve added several hundred problems, most designed to
develop the basic required analytic skills specific to each chapter. Today’s
students need a more gradual introduction to approaching the particular
demands of the material of each different physics topic—they need additional
support in order to learn how to solve the distinctive problems associated
with each individual block of concepts. To that end, I’ve added explanatory
diagrams, alternative solutions, and lots of hints on how to proceed. Chapters
now contain a brief section called “Problem Solving Guide,” which
summarizes needed concepts, anticipates pitfalls, and offers cautionary notes



that will be helpful in successfully dealing with the problems. I’ve gone over
every question in the book to improve the pedagogy, removing possible
ambiguities and making the questions more easily apprehended. All of this
was field-tested and fine-tuned in countless exams in my many college-
physics classes over the several years since the last edition.

I am grateful for all the comments and suggestions received from users of
this book, especially those of Gregory Stansbury, who is reading it just for
fun, and Jeremy Holbrook of Kennewick High School (in Kennewick,
Washington), who is helping to prepare the next generation. Speaking of the
next generation, I thank several Adelphi students—Lani Chau, Kelly
Hiersche, Tara Pena, Muhammad Aziz, and Danielle Sofferman—who
collectively worked through all the new problems; their feedback is most
appreciated. Dr. Andreas Karpf was kind enough to look over the entire book
and offer valuable suggestions. All the new art was brilliantly digitally
executed by Jim Atherton of Atherton Customs, whose elegant work is
unsurpassed. Last, I thank my wife, Carolyn Eisen Hecht, who patiently
coped with one more edition of one more book. Her good humor,
forbearance, wise counsel, and uncanny ability to spell any word in the
language, were essential.

Anyone wishing to make suggestions for this or future editions can reach
me at Adelphi University, Physics Department, Garden City, New York,
11530, or at genehecht@aol.com.

Freeport, NY
EUGENE HECHT
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Speed, Displacement, and Velocity: An
Introduction to Vectors

A Scalar Quantity, or scalar, is one that has nothing to do with spatial
direction. Many physical concepts such as length, time, temperature, mass,
density, charge, and volume are scalars; each has a scale or size, but no
associated direction. The number of students in a class, the quantity of sugar
in a jar, and the cost of a house are familiar scalar quantities.

Scalars are specified by ordinary numbers and add and subtract in the
usual way. Two candies in one box plus seven in another are nine candies in
total.

Distance (l ): Get in a vehicle and travel a distance, some length in space,
which we’ll symbolize by the letter l. Suppose the tripmeter subsequently
reads 100 miles (i.e., 161 kilometers); that’s how far you went along
whatever path you took, with no particular regard for hills or turns.
Similarly, the bug in Fig. 1-1 walked a distance l measured along a winding
route; l is also called the path-length, and it’s a scalar quantity.
(Incidentally, most people avoid using d for distance because it’s widely
used in the representation of derivatives.)

Average Speed (υaυ ) is a measure of how fast a thing travels in space, and
it too is a scalar quantity. Imagine an object that takes a time t to travel a
distance l. The average speed during that interval is defined as



The everyday units of speed in the U.S.A. are miles per hour, but in
scientific work we use kilometers per hour (km/h) or, better yet, meters per
second (m/s). As we’ll learn presently, speed is part of the more inclusive
concept of velocity, and that’s why we use the letter υ. A problem may
concern itself with the average speed of an object, but it can also treat the
special case of a constant speed υ, since then υaυ = υ = l/t (see Problem 1.3).

You may also see this definition written as υaυ = ∆l/∆t, where the symbol
∆ means “the change in.” That notation just underscores that we are dealing
with intervals of time (∆t) and space (∆l). If we plot a curve of distance
versus time, and look at any two points Pi and Pf on it, their separation in
space (∆l) is the rise, and in time (∆t) is the run. Thus, ∆l/∆t is the slope of
the line drawn from the initial location, Pi, to the final location, Pf . The
slope is the average speed during that particular interval (see Problem 1.5).
Figure 1-1(a) depicts the case where the rise of the line from Pi to Pf
happens to be 8.0 m and the run happens to be 5.0 s. The slope—the average
speed over that interval—is then (8.0 m)/(5.0 s). Keep in mind that distance
traveled, as indicated, for example, by an odometer in a car, is always
positive and never decreases; consequently, the graph of l versus t is always
positive and never decreases.

Fig. 1-1

Instantaneous Speed (υ): Thus far we’ve defined “average speed,” but we
often want to know the speed of an object at a specific time, say, 10 s after
1:00. Similarly, we might ask for the speed of something now. That’s a new
concept called the instantaneous speed, but we can define it building on the
idea of average speed. What we need is the average speed determined over a
vanishingly tiny time interval centered on the desired instant. Formally,
that’s stated as



Instantaneous speed (or just speed, for short) is the limiting value of the
average speed (∆l/∆t) determined as the interval over which the averaging
takes place (∆t) approaches zero. This mathematical expression becomes
especially important because it leads to the calculus and the idea of the
derivative. To keep the math simple, we won’t worry about the details; for
us it’s just the general concept that should be understood. In the next
chapter, we’ll develop equations for the instantaneous speed of an object at
any specific time.

Graphically, the slope of a line tangent to the distance versus time curve
at any point (i.e., at any particular time) is the instantaneous speed at that
time. Accordingly, suppose we wish to find the instantaneous speed in Fig.
1-1(b) at point P. Notice how shrinking the time interval ∆t, straddling P,
causes the line connecting the beginning and ending of the interval to
approach being the tangent to the curve at P. To find the slope of that
tangent, depicted in Fig. 1-1(c), take any two points on the tangent and
compute the rise over the run.

A Vector Quantity is a physical concept that is inherently directional and
can be specified completely only if both its magnitude (i.e., size) and
direction are provided. Many physical concepts such as displacement,
velocity, acceleration, force, and momentum are vector quantities. In
general, a vector (which stands for a specific amount of some vector
quantity) is depicted as a directed line segment and is pictorially represented
by an arrow (drawn to scale) whose magnitude and direction determine the
vector. In printed material vectors are usually symbolically presented in
boldface type (e.g., F for force). When written by hand it’s common to
distinguish a vector by just putting an arrow over the appropriate symbol
(e.g., ). For the sake of maximum clarity, we’ll combine the two and use .

The Displacement of an object from one location to another is a vector
quantity. As shown in Fig. 1-2, the displacement of the bug in going from P1
to point P2 is specified by the vector  (the symbol s comes from the
century-old usage corresponding to the “space” between two points). If the
straight-line distance from P1 to P2 is, say, 2.0 m, we simply draw  to be a
convenient length and label it 2.0 m. In any case,  = 2.0 m—10° NORTH OF
EAST.



Fig. 1-2

Velocity is a vector quantity that embraces both the speed and the direction
of motion. If an object undergoes a vector displacement  in a time interval
t, then

The direction of the velocity vector is the same as that of the displacement
vector. The units of velocity (and speed) are those of distance divided by
time, such as m/s or km/h.

Instantaneous Velocity is the average velocity evaluated for a time interval
that approaches zero. Thus, if an object undergoes a displacement ∆  in a
time ∆t, then for that object the instantaneous velocity is

where the notation means that the ratio ∆ /∆t is to be evaluated for a time
interval ∆t that approaches zero. Here, without calculus, we are just
interested in the general idea of instantaneous velocity.

The Addition of Vectors: The concept of “vector” is not completely
defined until we establish some rules of behavior. For example, how do
several vectors (displacements, forces, whatever) add with one another? The
bug in Fig. 1-3 walks from P1 to P2, pauses, and then goes on to P3. It



experiences two displacements 1 and 2, which combine to yield a net
displacement . Here  is called the resultant or sum of the two constituent
displacements, and it is the physical equivalent of them taken together  = 1
+ 2.

Fig. 1-3

Fig. 1-4



The Tip-to-Tail (or Polygon) Method: The two vectors in Fig. 1-3 show
us how to graphically add two (or more) vectors. Simply place the tail of the
second ( 2) at the tip of the first ( 1); the resultant then goes from the
starting point, P1 (the tail of 1), to the final point, P3 (the tip of 2). Fig. 1-
4(a) is more general; it shows an initial starting point Pi and three
displacement vectors. If we tip-to-tail those three displacements in any
order [Fig. 1-4(b) and (c)] we’ll arrive at the same final point Pf, and the
same resultant . In other words:

As long as the bug starts at Pi and walks the three displacements, in any
sequence, it will end up at Pf.

The same tip-to-tail procedure holds for any kind of vector, be it
displacement, velocity, force, or anything else. Accordingly, the resultant (
) obtained by adding the generic vectors , , and  is shown in Fig. 1-5.
The size or magnitude of a vector, for example, , is its absolute value
indicated symbolically as | |; (we’ll see how to calculate it presently). It’s
common practice, though not always a good idea, to represent the
magnitude of a vector using just a light face italic letter, for example, R = | |.

Fig. 1-5

Parallelogram Method for adding two vectors: The resultant of two vectors
acting at any angle may be represented by the diagonal of a parallelogram.
The two vectors are drawn as the sides of the parallelogram and the resultant
is its diagonal, as shown in Fig. 1-6. The direction of the resultant is away
from the origin of the two vectors.



Fig. 1-6

Subtraction of Vectors: To subtract a vector  from a vector , reverse the
direction of  and add it to vector , that is,  −  =  + (− ).

The Trigonometric Functions are defined in relation to a right angle. For
the right triangle shown in Fig. 1-7, by definition

We often use these in the forms

Fig. 1-7

A Component of a Vector is its effective value in a given direction. For
example, the x-component of a displacement is the displacement parallel to
the x-axis caused by the given displacement. A vector in three dimensions
may be considered as the resultant of its component vectors resolved along
any three mutually perpendicular directions. Similarly, a vector in two
dimensions may be resolved into two component vectors acting along any
two mutually perpendicular directions. Fig. 1-8 shows the vector  and its x
and y vector components, x and y, which have magnitudes



Fig. 1-8

or equivalently

Component Method for Adding Vectors: Each vector is resolved into its
x-, y-, and z-components, with negatively directed components taken as
negative. The scalar x-component Rx of the resultant  is the algebraic sum
of all the scalar x-components. The scalar y- and z-components of the
resultant are found in a similar way. With the components known in three
dimensions, the magnitude of the resultant is given by

In two dimensions, the angle of the resultant with the x-axis can be found
from the relation

Unit Vectors have a magnitude of one and are represented by a boldface
symbol topped with a caret. The special unit vectors , , and , called basis
vectors, are assigned to the x-, y-, and z-axes, respectively. A vector 3 ,
represents a three-unit vector in the +x-direction, while −5  represents a
five-unit vector in the −z-direction. A vector  that has scalar x-, y-, and z-
components Rx, Ry, and Rz, respectively, can be written as  = Rx  + Ry  +
Rz . Not all introductory physics courses use basis vectors, in which case
you can simply skip them.



Mathematical Operations with Units: In every mathematical operation,
the units terms (for example, lb, cm, ft3, mi/h, m/s2) must be carried along
with the numbers and must undergo the same mathematical operations as
the numbers.

Quantities cannot be added or subtracted directly unless they have the
same units (as well as the same dimensions). For example, if we are to add
algebraically 5 m (length) and 8 cm (length), we must first convert m to cm
or cm to m. However, quantities of any sort can be combined in
multiplication or division, in which the units as well as the numbers obey
the algebraic laws of squaring, cancellation, and so on. Thus:

PROBLEM SOLVING GUIDE

Read each problem carefully! Most often we miss stuff on the first reading.
Whenever possible, draw a simple diagram illustrating the problem. Put into
the drawing all the given information as well as what you were asked to
find. That will help you organize your thinking. Try doing the [I]-level
worked-out problems first. Cover the solutions and look at them only after
you’re finished or you get stuck. Wait a day or two and then go back to any
problem you could not do and try again, and again if need be, until you
really master it. Do not round off numbers in the middle of a calculation.

SOLVED PROBLEMS

1.1 [I]     A toy train moves along a winding track at an average speed of 0.25
m/s. How far will it travel in 4.00 minutes? (See Appendix A on



significant figures.)

The defining equation is υaυ = l/t. Here l is in meters, and t is in
seconds, so the first thing to do is convert 4.00 min into seconds:
(4.00 min)(60.0 s/min) = 240 s. Solving the equation for l,

Since the speed has only two significant figures, l = 60 m.

1.2 [I]     A student driving a car travels 10.0 km in 30.0 min. What was her
average speed?

The defining equation is υaυ = l/t. Here l is in kilometers, and t is
in minutes, so the first thing to do is convert 10.0 km to meters
and then 30.0 min into seconds: (10.0 km)(1000 m/km) = 10.0 ×
103 m and (30.0 min) × (60.0 s/min) = 1800 s. We need to solve
for υaυ, giving the numerical answer to three significant figures:

1.3 [I]     Rolling along across the machine shop at a constant speed of 4.25
m/s, a robot covers a distance of 17.0 m. How long does that
journey take?

Since the speed is constant the defining equation is υ = l/t.
Multiply both sides of this expression by t and then divide both by
υ:

1.4 [I]     Change the speed 0.200 cm/s to units of kilometers per year. Use
365 days per year.

1.5 [I]     A car travels along a road and its odometer readings are plotted



against time in Fig. 1-9. Find the instantaneous speed of the car at
points A and B. What is the car’s average speed?

Fig. 1-9

Because the speed is given by the slope ∆l/∆t of the tangent line,
we take a tangent to the curve at point A. The tangent line is the
curve itself in this case, since it’s a straight line. For the triangle
shown near A, we have

This is the speed at point A and it’s also the speed at point B and at
every other point on the straight-line graph. It follows that υ = 0.50
m/s = υaυ. When the speed is constant the distance versus time
curve is a straight line.

1.6 [I]     A kid stands 6.00 m from the base of a flagpole which is 8.00 m
tall. Determine the magnitude of the displacement of the brass
eagle on top of the pole with respect to the youngster’s feet.

The geometry corresponds to a 3-4-5 right triangle (i.e., 3 × 2 − 4
× 2 − 5 × 2). Thus, the hypotenuse, which is the 5-side, must be
10.0 m long, and that’s the magnitude of the displacement.

1.7 [II]    A runner makes one complete lap around a 200-m track in a time of



25 s. What were the runner’s (a) average speed and (b) average
velocity?

(a) From the definition,

(b) Because the run ended at the starting point, the displacement
vector from starting point to end point has zero length. Since 

,

1.8 [I]     Using the graphical method, find the resultant of the following two
displacements: 2.0 m at 40° and 4.0 m at 127°, the angles being
taken relative to the +x-axis, as is customary. Give your answer to
two significant figures. (See Appendix A on significant figures.)

Choose x- and y-axes as seen in Fig. 1-10 and lay out the
displacements to scale, tip to tail from the origin. Notice that all
angles are measured from the +x-axis. The resultant vector 
points from starting point to end point as shown. We measure its
length on the scale diagram to find its magnitude, 4.6 m. Using a
protractor, we measure its angle θ to be 101°. The resultant
displacement is therefore 4.6 m at 101°.

Fig. 1-10



Fig. 1-11

1.9 [I]      Find the x- and y-components of a 25.0-m displacement at an angle
of 210.0°.

The vector displacement and its components are depicted in Fig.
1-11. The scalar components are

Notice in particular that each component points in the negative
coordinate direction and must therefore be taken as negative.

1.10 [II]  Solve Problem 1.8 by use of rectangular components.

We resolve each vector into rectangular components as illustrated
in Fig. 1-12(a) and (b). (Place a cross-hatch symbol on the original
vector to show that it is replaced by its components.) The resultant
has scalar components of

Notice that components pointing in the negative direction must be
assigned a negative value. Thus, since sx is to the left in the
negative x-direction it is negative, whereas sy is upward in the
positive y-direction and is positive.

The resultant is shown in Fig. 1-12(c); there,



and φ = 79°, from which θ = 180° − φ = 101°. Hence,  = 4.6 m −
101° FROM + x-AXIS; remember, vectors must have their directions
stated explicitly.

Fig. 1-12

1.11 [II]  Add the following two displacement vectors using the
parallelogram method: 30 m at 30° and 20 m at 140°. Remember
that numbers like 30 m and 20 m have two significant figures.

The vectors are drawn with a common origin in Fig. 1-13(a). We
construct a parallelogram using them as sides, as shown in Fig. 1-
13(b). The resultant  is then represented by the diagonal. By
measurement, we find that  is 30 m at 69°.

Fig. 1-13

1.12 [II]  Express the vectors illustrated in Figs. 1-12(c), 1-14, 1-15, and 1-16
in the form  (leave out the units). If you are
not using basis vectors skip this problem.



Fig. 1-14

Fig. 1-15

Fig. 1-16

Remembering that plus and minus signs must be used to show
direction along an axis,



1.13 [I]     Perform graphically the following vector additions and
subtractions, where , , and  are the vectors drawn in Fig. 1-
17: (a)  + ; (b)  + + ; (c)  − ; (d)  + − .

See Fig. 1-16(a) through (d). In (c),  −  =  + (− ); that is, to
subtract  from , reverse the direction of  and add it vectorially
to . Similarly, in (d),  +  −  =  +  + (− ), where −  is
equal in magnitude but opposite in direction to .

Fig. 1-17

1.14 [II]  If  and , find the resultant when  is subtracted from
. If you have not learned to use basis vectors, skip this problem.

From a purely mathematical approach,

Notice that  is simply  reversed in direction. Therefore, we
have, in essence, reversed  and added it to  .

1.15 [II]  A boat can travel at a speed of 8 km/h in still water on a lake. In the
flowing water of a stream, it can move at 8 km/h relative to the
water in the stream. If the stream speed is 3 km/h, how fast can the
boat move past a tree on the shore when it is traveling (a)
upstream and (b) downstream?



(a) If the water was standing still, the boat’s speed past the tree
would be 8 km/h. But the stream is carrying it in the opposite
direction at 3 km/h. Therefore, the boat’s speed relative to the
tree is 8 km/h − 3 km/h = 5 km/h.

(b) In this case, the stream is carrying the boat in the same
direction the boat is trying to move. Hence, its speed past the
tree is 8 km/h + 3 km/h = 11 km/h.

1.16 [III] A plane is traveling eastward at an airspeed of 500 km/h. But a 90-
km/h wind is blowing southward. What are the direction and speed
of the plane relative to the ground? If you have not learned how to
deal with relative velocities, skip this problem.

The plane’s resultant velocity with respect to the ground, PG, is the
sum of two vectors, the velocity of the plane with respect to the
air, PA = 500 km/h—EAST and the velocity of the air with respect
to the ground, AG = 90 km/h—SOUTH. In other words, PG = PA + 
AG. These component velocities are shown in Fig. 1-18. The
plane’s resultant speed is

The angle α is given by

from which α = 10°. The plane’s velocity relative to the ground is
508 km/h at 10° south of east.

1.17 [III] With the same airspeed as in Problem 1.16, in what direction must
the plane head in order to move due east relative to the Earth?

The sum of the plane’s velocity through the air and the velocity of
the wind will be the resultant velocity of the plane relative to the
Earth. This is shown in the vector diagram in Fig. 1-19. Notice
that, as required, the resultant velocity is eastward. Keeping in
mind that the wind speed is given to two significant figures, it is
seen that sin θ = (90 km/h)(500 km/h), from which θ = 10°. The



plane should head 10° north of east if it is to move eastward
relative to the Earth.

To find the plane’s eastward speed, we note in the figure that υPG
= (500 km/h) cos θ = 4.9 × 105 m/h.

Fig. 1-18

Fig. 1-19

SUPPLEMENTARY PROBLEMS

1.18 [I]    Three kids in a parking lot launch a rocket that rises into the air
along a 380-m long arc in 40 s. Determine its average speed.

1.19 [I]    An ant walked 10.0 cm across the floor in 6.2 s. What was its
average speed in m/s? [Hint: 2 significant figures. You are given s
and t and must find uau. Watch out for units.]

1.20 [I]    A 12-mg housefly has a maximum speed of 4.5 mph; what is that
in m/s? [Hint: 2 significant figures. 1 mph = 0.447 07 m/s.]

1.21 [I]    According to its computer, a robot that left its closet and traveled



1200 m, had an average speed of 20.0 m/s. How long did the trip
take?

1.22 [I]    A car’s odometer reads 22 687 km at the start of a trip and 22 791
km at the end. The trip took 4.0 hours. What was the car’s average
speed in km/h and in m/s?

1.23 [I]    A model plane flew 100 m in 25.0 s followed by another 240 m in
an additional 60.0 s, whereupon it crashed into the ground. How
far did it travel in total? How long was it in the air? What was its
average speed? [Hint: The overall average is not equal to the
average of the averages. When you have several segments in a
problem, label them like this: l1 and l2 and t1 and t2, such that l = l1
+ l2 and t = t1 + t2.]

1.24 [I]    A toy car traveled at an average speed of 2.0 m/s for 20 s, followed
by 40 s at an average speed of 1.0 m/s, whereupon it came to a
stop. How far in total did it go? How long in time did it travel?
What was its average speed?

1.25 [I]    An auto travels at the rate of 25 km/h for 4.0 minutes, then at 50
km/h for 8.0 minutes, and finally at 20 km/h for 2.0 minutes. Find
(a) the total distance covered in km and (b) the average speed for
the complete trip in m/s.

1.26 [I]    Starting from the center of town, a car travels east for 80.0 km and
then turns due south for another 192 km, at which point it runs out
of gas. Determine the displacement of the stopped car from the
center of town.

1.27 [II]  A little turtle is placed at the origin of an xy-grid drawn on a large
sheet of paper. Each grid box is 1.0 cm by 1.0 cm. The turtle
walks around for a while and finally ends up at point (24, 10), that
is, 24 boxes along the x-axis, and 10 boxes along the y-axis.
Determine the displacement of the turtle from the origin at the
point.

1.28 [II]  A bug starts at point A, crawls 8.0 cm east, then 5.0 cm south, 3.0



cm west, and 4.0 cm north to point B. (a) How far south and east
is B from A? (b) Find the displacement from A to B both
graphically and algebraically.

1.29 [II]  A runner travels 1.5 laps around a circular track in a time of 50 s.
The diameter of the track is 40 m and its circumference is 126 m.
Find (a) the average speed of the runner and (b) the magnitude of
the runner’s average velocity. Be careful here; average speed
depends on the total distance traveled, whereas average velocity
depends on the displacement at the end of the particular journey.

1.30 [II]  During a race on an oval track, a car travels at an average speed of
200 km/h. (a) How far did it travel in 45.0 min? (b) Determine its
average velocity at the end of its third lap.

1.31 [II]  The following data describe the position of an object along the x-
axis as a function of time. Plot the data, and find, as best you can,
the instantaneous velocity of the object at (a) t = 5.0 s, (b) 16 s,
and (c) 23 s.

1.32 [II]  For the object whose motion is described in Problem 1.27, as best
you can, find its velocity at the following times: (a) 3.0 s, (b) 10 s,
and (c) 24 s.

1.33 [I]    Find the scalar x- and y-components of the following displacements
in the xy-plane: (a) 300 cm at 127° and (b) 500 cm at 220°.

1.34 [II]  Starting at the origin of coordinates, the following displacements
are made in the xy-plane (that is, the displacements are coplanar):
60 mm in the +y-direction, 30 mm in the −x-direction, 40 mm at
150°, and 50 mm at 240°. Find the resultant displacement both
graphically and algebraically.

1.35 [II]  Compute algebraically the resultant of the following coplanar
displacements: 20.0 m at 30.0°, 40.0 m at 120.0°, 25.0 m at
180.0°, 42.0 m at 270.0°, and 12.0 m at 315.0°. Check your



answer with a graphical solution.

1.36 [II]  What displacement at 70° has an x-component of 450 m? What is
its y-component?

1.37 [II]  What displacement must be added to a 50-cm displacement in the
+x-direction to give a resultant displacement of 85 cm at 25°?

1.38 [I]    Refer to Fig. 1-20. In terms of vectors  and  , express the
vectors (a) , (b) , (c) , and (d) .

Fig. 1-20

Fig. 1-21

1.39 [I]    Refer to Fig. 1-21. In terms of vectors  and  , express the
vectors (a)  , (b)  − , and (c)  +  – .

1.40 [II]  Find (a)  +  + , (b)  −  , and (c)  −  if , and 
.

1.41 [II]  Find the magnitude and angle of  if .



1.42 [II]  Determine the displacement vector that must be added to the
displacement  m to give a displacement of 7.0 m pointing in
the +x-direction?

1.43 [II]  A vector  is added to a vector . What is the magnitude of
the resultant?

1.44 [III] A truck is moving north at a speed of 70 km/h. The exhaust pipe
above the truck cab sends out a trail of smoke that makes an angle
of 20° east of south behind the truck. If the wind is blowing
directly toward the east, what is the wind speed at that location?
[Hint: The smoke reveals the direction of the truck with-respect-to
the air.]

1.45 [III] A ship is traveling due east at 10 km/h. What must be the speed of
a second ship heading 30° east of north if it is always due north of
the first ship?

1.46 [III] A boat, propelled so as to travel with a speed of 0.50 m/s in still
water, moves directly across a river that is 60 m wide. The river
flows with a speed of 0.30 m/s. (a) At what angle, relative to the
straight-across direction, must the boat be pointed? (b) How long
does it take the boat to cross the river?

1.47 [III] A reckless drunk is playing with a gun in an airplane that is going
directly east at 500 km/h. The drunk shoots the gun straight up at
the ceiling of the plane. The bullet leaves the gun at a speed of
1000 km/h. According to someone standing on the Earth, what
angle does the bullet make with the vertical?

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.18 [I]    9.5 m/s

1.19 [I]    0.016 m/s



1.20 [I]    2.0 m/s

1.21 [I]    60.0 s

1.22 [I]    26 km/h, 7.2 m/s

1.23 [I]    4.00 m/s

1.24 [I]    1.3 m/s

1.25 [I]    (a) 9.0 km; (b) 10.7 m/s or 11 m/s

1.26 [I]    208 km—67.4° south of east

1.27 [II]  26 cm—23° above x-axis

1.28 [II]  (a) 1.0 cm—south, 5.0 cm—east; (b) 5.10 cm—11.3° south of east

1.29 [II]  (a) 3.8 m/s; (b) 0.80 m/s

1.30 [II]  (a) 150 km; (b) zero

1.31 [II]  (a) 0.018 m/s in the positive x-direction; (b) 0 m/s; (c) 0.014 m/s in
the negative x-direction

1.32 [II]  (a) 1.9 cm/s in the positive x-direction; (b) 1.1 cm/s in the positive
x-direction; (c) 1.5 cm/s in the negative x-direction

1.33 [I]    (a) −181 cm, 240 cm; (b) −383 cm, −321 cm

1.34 [II]  97 mm at 158°

1.35 [II]  20.1 m at 197°

1.36 [II]  1.3 km, 1.2 km

1.37 [II]  45 cm at 53°

1.38 [I]    (a)  +  ; (b)  ; (c) − ; (d)  − 



1.39 [I]    (a) −  −  or −(  + ); (b)  ; (c) −

1.40 [II]  

1.41 [II]  14 at −60°

1.42 [II]  

1.43 [II]  21

1.44 [III] 25 km/h

1.45 [III] 20 km/h

1.46 [III] (a) 37° upstream; (b) 1.5 × 102 s

1.47 [III] 26.6°



Uniformly Accelerated Motion

Acceleration measures the time rate-of-change of velocity:

where  is the initial velocity,  is the final velocity, and t is the time interval
over which the change occurred. The units of acceleration are those of
velocity divided by time. Typical examples are (m/s)/s (or m/s2) and
(km/h)/s (or km/h·s). Notice that acceleration is a vector quantity. It has the
direction of , the change in velocity. It is nonetheless commonplace to
speak of the magnitude of the acceleration as just the acceleration, provided
there is no ambiguity.

When we concern ourselves only with accelerations tangent to the path
traveled, the direction of the acceleration is known and we can write the
defining equation in scalar form as

Uniformly Accelerated Motion Along a Straight Line is an important
situation. In this case, the acceleration vector is constant and lies along the
line of the displacement vector, so that the directions of  and  can be
specified with plus and minus signs. If we represent the displacement by s
(positive if in the positive direction, and negative if in the negative
direction), then there will be five convenient equations describing uniformly
accelerated motion:



It would be very helpful to memorize these five equations. Often s is
replaced by x or y, and sometimes υf and υi are written as υ and υ0,
respectively.
Direction Is Important, and a positive direction must be chosen when
analyzing motion along a line. Either direction may be chosen as positive. If
a displacement, velocity, or acceleration is in the opposite direction, it must
be taken as negative.

Graphical Interpretations for motion along a straight line (e.g., the x-axis)
are as follows:

•  A plot of distance versus time is always positive (i.e., the graph lies
above the time axis). Such a curve never decreases (i.e., it can never
have a negative slope or speed). Just think about the odometer and
speedometer in a car.

•  Because the displacement is a vector quantity, we can only graph it
against time if we limit the motion to a straight line and then use plus
and minus signs to specify direction. Accordingly, it’s common
practice to plot displacement along a straight line versus time using
that scheme. Such a graph representing motion along, say, the x-axis,
may be either positive (plotted above the time axis) when the object
is to the right of the origin (x = 0), or negative (plotted below the time
axis) when the object is to the left of the origin (see Fig. 2-1). The
graph can be positive and get more positive, or negative and get less
negative. In both cases the curve would have a positive slope, and the
object a positive velocity (it would be moving in the positive x-
direction). Furthermore, the graph can be positive and get less
positive, or be negative and get more negative. In both these cases the
curve would have a negative slope, and the object a negative velocity
(it would be moving in the negative x-direction).



•  The instantaneous velocity of an object at a certain time is the slope
of the displacement versus time graph at that time. It can be positive,
negative, or zero.

•  The instantaneous acceleration of an object at a certain time is the
slope of the velocity versus time graph at that time.

•  For constant-velocity motion along the x-axis, the x-versus-t graph is
a tilted straight line. For constant-acceleration motion, the υ-versus-t
graph is a straight line.

Acceleration Due to Gravity (g): The acceleration of a body moving only
under the force of gravity is g, the gravitational (or free-fall) acceleration,
which is directed vertically downward. On Earth at the surface, on average,
g = 9.81 m/s2 (i.e., 32.2 ft/s2); the value varies slightly from place to place.
On the Moon, at the surface, the average free-fall acceleration is 1.6 m/s2.

Velocity Components: Suppose that an object moves with a velocity  at
some angle θ up from the x-axis, as would initially be the case with a ball
thrown into the air. That velocity then has x and y vector components (see
Fig. 1-7) of  and . The corresponding scalar components of the velocity are

and these can turn out to be positive or negative numbers, depending on θ.
As a rule, if  is in the first quadrant, υx > 0 and υy > 0; if  is in the second
quadrant, υx < 0 and υy > 0; if  is in the third quadrant, υx < 0 and υy < 0;
finally, if  is in the fourth quadrant, υx > 0 and υy < 0. Because these
quantities have signs, and therefore implied directions along known axes, it
is common to refer to them as velocities. The reader will find this usage in
many texts, but it is not without pedagogical drawbacks. Instead, we shall
avoid applying the term “velocity” to anything but a vector quantity (written
in boldface with an arrow above) whose direction is explicitly stated. Thus,
for an object moving with a velocity  = 100 m/s—west, the scalar value of
the velocity along the x-axis is υx = −100 m/s; and the (always positive)
speed is υ = 100 m/s.

Projectile Problems can be solved easily if air friction can be ignored. One
simply considers the motion to consist of two independent parts: horizontal
motion with a = 0 and υf = υi = υaυ (i.e., constant speed), and vertical motion



with a = g = 9.81 m/s2 downward.
Let’s first analyze an object falling freely near the surface of the Earth.

The situation involves vector quantities, but since the motion is along a
straight line, we need only assign signs to s or y, υi, υf , a = g, and t, and then
use the scalar equations (2.3) through (2.7). Keep in mind that g = ±9.81
m/s2 is always downward and t is always positive. It’s often most convenient
to choose the initial direction of motion (actual or impending) to be positive.
Suppose an object is dropped (υi = 0) or thrown straight down at a speed υi.
Taking down as plus, υi, g, and t must be entered into the equations as
positive numbers. The distance fallen, measured down from the starting
point (y = 0), will be positive, as will be the final speed υf . Because g is
downward, the falling object accelerates and υf > υi.

Now imagine an object fired straight upward; choose up to be positive. In
that case the location of the object, y, measured up from the launch point is
positive. Similarly υi must be entered into the equations as a positive
number, whereas g acting down is negative (i.e., −9.81 m/s2). Notice that the
object will come to a stop at its peak altitude given by

The minus sign will cancel because g is negative. This expression follows
from Eq. (2.6), where s = y, υf = 0, and a = g. Similarly the time to reach
peak altitude, tp, is gotten from Eq. (2.5), where again υf = 0:

Because g is negative, tp will be positive.
Assuming friction is negligible, when a projectile is launched

horizontally at a speed υix, it will progress forward at that constant speed as
it independently falls, under the influence of gravity, with the acceleration g.
Another ball dropped at the same instant from the same height as the
horizontally fired ball will fall straight down in step with the parabolically
arcing projectile. They will both hit the ground at the same moment. Given
that t is the time it takes to fall any height y—which time can be computed
from Eq. (2.7)—it follows that the corresponding horizontal distance
traveled is x equal to υix t.

The most general launch of a projectile is up at some angle θ with respect



to the horizontal. Then with an initial speed of υi, the scalar x- and y-
components of velocity are

The horizontal speed uix is constant, whereas the vertical motion
experiences a downward acceleration of g. The projectile sails along a
parabola as shown in Fig. 2-7. The peak altitude (yp) is given by Eq. (2.9) in
which uiy = ui sin θ is substituted for ui. Likewise the peak time (tp) is given
by Eq. (2.10) in which uiy = ui sin θ is again substituted for ui. Because the
trajectory is symmetrical, the total time of flight tT = 2tp.

The range (R) in Fig. 2-7 is defined as the horizontal distance covered by
a ballistic projectile upon returning to the height at which it was launched:

The minus sign cancels because g = −9.81 m/s2.

Dimensional Analysis: All mechanical quantities, such as acceleration and
force, can be expressed in terms of three fundamental dimensions: length L,
mass M, and time T. For example, acceleration is a length (a distance)
divided by (time)2; we say it has the dimensions L/T 2, which we write as
[LT−2]. The dimensions of volume are [L3], and those of velocity are [LT−1].
Because force is mass multiplied by acceleration, its dimensions are [MLT
−2]. Dimensions are helpful in checking equations, since each term of an
equation must have the same dimensions. For example, the dimensions of
the equation

are

so each term has the dimensions of length. Remember, all terms in an
equation must have the same dimensions. As examples, an equation cannot
have a volume [L3] added to an area [L2], or a force [MLT−2] subtracted
from a velocity [LT−1]; these terms do not have the same dimensions.



PROBLEM SOLVING GUIDE

Start the analysis of each problem by carefully reading it, several times if
necessary. Once you know what was given and what you must find, write
those quantities down with their appropriate symbols. For example, uix =
20.0 m/s. Make sure the units are correct, and don’t lose any of the
significant figures. Another common error is to incorrectly carry numbers
from the statement of the problem to your solution: 0.000 070 is not 0.000
70, and 3.759 8 is not 3.795 8. Everyone makes errors, but the pros check
their work. Here the most important equations are (2.2), (2.3), (2.4), (2.5),
(2.6), and (2.7). As regards ballistics, keep in mind that horizontal motions
occur at a constant speed, whereas vertical motions experience a uniform
downward acceleration.

SOLVED PROBLEMS

2.1 [I]     A robot named Fred is initially moving at 2.20 m/s along a hallway
in a space terminal. It subsequently speeds up to 4.80 m/s in a time
of 0.20 s. Determine the size or magnitude of its average
acceleration along the path traveled.

The defining scalar equation is aaυ = (υf − υi)/t. Everything is in
proper SI units, so we need only carry out the calculation:

Notice that the answer has two significant figures because the time
has only two significant figures.

2.2 [I]     A car is traveling at 20.0 m/s when the driver slams on the brakes
and brings it to a straight-line stop in 4.2 s. What is the magnitude
of its average acceleration?



The defining scalar equation is aaυ = (υf − υi)/t. Note that the final
speed is zero. Here the initial speed is greater than the final speed,
so we can expect the acceleration to be negative:

Because the time is provided with only two significant figures, the
answer is −4.8 m/s2.

2.3 [II]    An object starts from rest with a constant acceleration of 8.00 m/s2

along a straight line. Find (a) the speed at the end of 5.00 s, (b) the
average speed for the 5-s interval, and (c) the distance traveled in
the 5.00 s.

We are interested in the motion for the first 5.00 s. Take the
direction of motion to be the +x-direction (that is, s = x). We know
that υi = 0, t = 5.00 s, and a = 8.00 m/s2. Because the motion is
uniformly accelerated, the five motion equations apply.

2.4 [II]    A truck’s speed increases uniformly from 15 km/h to 60 km/h in 20
s. Determine (a) the average speed, (b) the acceleration, and (c)
the distance traveled, all in units of meters and seconds.

For the 20-s trip under discussion, taking +x to be in the direction
of motion,



2.5 [II]    An object’s one-dimensional motion along the x-axis is graphed in
Fig. 2-1. Describe its motion.

The velocity of the object at any instant is equal to the slope of the
displacement–time graph at the point corresponding to that instant.
Because the slope is zero from exactly t = 0 s to t = 2.0 s, the
object is standing still during this time interval. At t = 2.0 s, the
object begins to move in the +x-direction with constant-velocity
(the slope is positive and constant). For the interval t = 2.0 s to t =
4.0 s,

The average velocity is then aυ = 1.5 m/s—positive X-direction.

During the interval t = 4.0 s to t = 6.0 s, the object is at rest; the
slope of the graph is zero and x does not change for that interval.

From t = 6.0 s to t = 10 s and beyond, the object is moving in the
–x-direction; the slope and the velocity are negative. We have

The average velocity is then aυ = 1.3 m/s—negative X-direction.

2.6 [II]    The vertical motion of an object is graphed in Fig. 2-2. Describe its
motion qualitatively, and find, as best you can, its instantaneous
velocity at points A, B, and C.



Fig. 2-1

Fig. 2-2

Recalling that the instantaneous velocity is given by the slope of
the graph, we see that the object is moving fastest at t = 0. As it
rises, it slows and finally stops at B. (The slope there is zero.)
Then it begins to fall back downward at ever-increasing speed.



At point A, we have

The velocity at A is positive, so it is in the +y-direction: A = 2.3
m/s—up. At points B and C,

Because it is negative, the velocity at C is in the −y-direction: C =
1.2 m/s—down. Remember that velocity is a vector quantity and
direction must be specified explicitly.

2.7 [II]    A ball is dropped from rest at a height of 50 m above the ground.
(a) What is its speed just before it hits the ground? (b) How long
does it take to reach the ground?

If we can ignore air friction, the ball is uniformly accelerated until
it reaches the ground. Its acceleration is downward and is 9.81
m/s2. Taking down as positive, we have for the trip:

(We could just as well have taken up as positive. How would the
calculation have been changed?)

2.8 [II]    A skier starts from rest and slides down a mountainside along a
straight descending path 9.0 m long in 3.0 s. In what time after
starting will the skier acquire a speed of 24 m/s? Assume that the



acceleration is constant and the entire run is straight, at a fixed
incline, and around 1.0-km long.

We must find the skier’s acceleration from the data concerning the
3.0 s trip. Taking the direction of motion down the inclined path as
the +x-direction, we have t = 3.0 s, υix = 0, and x = 9.0 m. Then 

 gives

We can now use this value of a for the longer trip, from the
starting point to the place where υfx = 24 m/s. For this trip, υix = 0,
υfx = 24 m/s, a = 2.0 m/s2. Then, from υf = υi + at,

2.9 [II]    A bus moving in a straight line at a speed of 20 m/s begins to slow
at a constant rate of 3.0 m/s each second. Find how far it goes
before stopping.

Take the direction of motion to be the +x-direction. For the trip
under consideration, υi = 20 m/s, υf = 0 m/s, a = −3.0 m/s2. Notice
that the bus is not speeding up in the positive motion direction.
Instead, it is slowing in that direction and so its acceleration is
negative (a deceleration). Use

to find

2.10 [II]  A car moving along a straight road at 30 m/s slows uniformly to a



speed of 10 m/s in a time of 5.0 s. Determine (a) the acceleration
of the car and (b) the distance it moves during the third second.

Take the direction of motion to be the +x-direction.

(a) For the 5.0 s interval, we have t = 5.0 s, υix 30 m/s, υf = 10 m/s.
Using υfx = υix + at

The distance the car moves during the third second is NOT the
distance it moves in the first three seconds. Consequently:

2.11 [II]  The speed of a train is reduced uniformly from 15 m/s to 7.0 m/s
while traveling a distance of 90 m. (a) Compute the acceleration.
(b) How much farther will the train travel before coming to rest,
provided the acceleration remains constant?

Take the direction of motion to be the +x-direction.

(a) We have υix = 15 m/s, υfx = 7.0 m/s, x = 90 m. Then υ2fx = υ2ix
+ 2ax gives

a = −0.98 m/s2

(b) The new conditions υix = 7.0 m/s, υf = 0, and a = −0.98 m/s2

now obtain. Then
leads to



2.12 [II]  A stone is thrown straight upward and it rises to a maximum height
of 20 m. With what speed was it thrown?

Take up as the positive y-direction. The stone’s velocity is zero at
the top of its path. Then υfy = 0, y = 20 m, a = −9.81 m/s2. (The
minus sign arises because the acceleration due to gravity is always
downward and we have taken up to be positive.) Use  to
find

Alternative Method

You can check your result using the fact that the peak altitude is
given by Eq. (2.9); that is, , and so  or 
and ui = 19.8 m/s, or to two significant figures, ui = 20 m/s.

2.13 [II]  A stone is thrown straight upward with a speed of 20 m/s. It is
caught on its way down at a point 5.0 m above where it was
thrown. (a) How fast was it going when it was caught? (b) How
long did the trip take?

The situation is shown in Fig. 2-3. Take up as positive. Then, for
the trip that lasts from the instant after throwing to the instant
before catching, υiy = 20 m/s, y = +5.0 m (since it is an upward
displacement), a = −9.81 m/s2.

(a) Use  to compute

Take the negative sign because the stone is moving downward,
in the negative direction, at the final instant.



Fig. 2-3

(b) To find the time, use a = (υfy − υiy)/t and so

Notice that we retain the minus sign on υfy.

Alternative Method

You can check your work by dividing the problem into two parts,
the trip up to peak altitude and the trip down from peak. The peak
altitude is given by Eq. (2.9); that is, yp =  = −(20
m/s)2/2(−9.81 m/s2) = 20.387 36 m. [Hint: Don’t round off to two
figures mid-calculation.] Now drop the stone from yp so it falls a
distance (20.387 36 m) – (5.0 m) = 15.387 36 m, at which point it
will be moving—from Eq. (2.6) with down as plus—at  = 2gs =
2(9.81 m/s2)(15.387 36 m) = 301.900 m2/s2, and so υf = 17.4 m/s =
17 m/s. Similarly, you can calculate the total time of flight, which
equals the time to reach peak altitude plus the time to fall 15.387
m.



2.14 [II]  A ball that is thrown vertically upward on the Moon returns to its
starting point in 4.0 s. The acceleration due to gravity there is 1.60
m/s2 downward. Find the ball’s original speed.

Take up as positive. For the trip from beginning to end, y = 0 (it
ends at the same level it started at), a = −1.60 m/s2, t = 4.0 s. Use 

 to find

from which υiy = 3.2 m/s.

2.15 [III] A baseball is thrown straight upward on the Moon with an initial
speed of 35 m/s. Compute (a) the maximum height reached by the
ball, (b) the time taken to reach that height, (c) its velocity 30 s
after it is thrown, and (d) when the ball’s height is 100 m.

Take up as positive. At the highest point, the ball’s velocity is
zero.

Because υf is negative and we are taking up as positive, the
velocity is directed downward. The ball is on its way down at t
= 30 s.

By use of the quadratic formula,



we find t = 3.1 s and 41 s. At t = 3.1 s the ball is at 100 m and
ascending; at t = 41 s it is at the same height but descending.

2.16 [III] A ballast bag is dropped from a balloon that is 300 m above the
ground and rising at 13 m/s. For the bag, find (a) the maximum
height reached, (b) its position and velocity 5.0 s after it is
released, and (c) the time at which it hits the ground.

The initial velocity of the bag when released is the same as that of
the balloon, 13 m/s upward. Choose up as positive and take y = 0
at the point of release.

or 4.905t2 − 13t − 300 = 0. The quadratic formula gives t = 9.3
s and −6.6 s. Only the positive time has physical meaning, so
the required answer is 9.3 s.

We could have avoided the quadratic formula by first
computing υf :

so that υfy = ±77.8 m/s. Then, using the negative value for υfy
(why?) in υfy = υiy + at gives t = 9.3 s, as before.

2.17 [III] As depicted in Fig. 2-4, a projectile is fired horizontally with a
speed of 30 m/s from the top of a cliff 80 m high. (a) How long
will it take to strike the level ground at the base of the cliff? (b)
How far from the foot of the cliff will it strike? (c) With what
velocity will it strike?
(a) The horizontal and vertical motions are independent of each



other. Consider first the vertical motion. Taking up as positive
and y = 0 at the top of the cliff,

from which t = 4.04 s or 4.0 s. Notice that the initial velocity
had zero vertical component and so υi = 0 for the vertical
motion. Had we taken down as positive both of those minus
signs would have been plus signs and the time would still be
4.0 s.

Fig. 2-4

(b) Now consider the horizontal motion. For it, a = 0 and so υx =
υix = υfx = 30 m/s. Then, using the value of t found in (a),

x = υx t = (30 m/s)(4.04 s) = 121 m or 0.12 km

(c) The final velocity has a horizontal component of 30 m/s. But
its vertical component at t = 4.04 s is given by υfy = υiy + ay t as

υfy = 0 + (−9.81 m/s2)(4.04 s) = −39.6 m/s or −40 m/s

The resultant of these two components is labeled  in Fig. 2-4:



The angle θ as shown is given by tan θ = 39.6/30 and is 52.9°
or 53°. Hence,  = 50 m/s—53° below X-axis.

2.18 [I]    A stunt flier is moving at 15 m/s parallel to the flat ground 100 m
below, as illustrated in Fig. 2-5. How large must the distance x
from plane to target be if a sack of flour released from the plane is
to strike the target?

Following the same procedure as in Problem 2.17, we use 
 to get

Now x = υx t = (15 m/s) (4.52 s) = 67.8 m or 68 m.

Fig. 2-5

2.19 [II]  A baseball is thrown with an initial velocity of 100 m/s at an angle
of 30.0° above the horizontal, as seen in Fig. 2-6. How far from
the throwing point will the baseball attain its original level?

Fig. 2-6

Divide the problem into horizontal and vertical parts, for which

υix = υi cos 30.0° = 86.6 m/s      and      υiy = υi sin 30.0° = 50.0 m/s



where up is taken as positive.

In the vertical piece of the problem, y = 0, since the ball returns to
its original height. Then

In the horizontal part of the problem, υix = υfx = υx = 86.6 m/s.
Therefore,

x = υx t = (86.6 m/s)(10.2 s) = 883 m.

Alternative Method

The distance x is the range R, which, by Eq. (2.12), is R = (−2/g)
(ui cos θ)(ui sin θ) = (−2/−9.81 m/s2)(100 m/s)2 (cos 30.0)(sin
30.0) = 882.8 m.

2.20 [III] As drawn in Fig. 2-7, a ball is thrown from the top of one building
toward a tall building 50 m away. The initial velocity of the ball is
20 m/s—40° above horizontal. How far above or below its original
level will the ball strike the opposite wall?



Fig. 2-7

We have

υix = (20 m/s) cos 40° = 15.3 m/s

υix = (20 m/s) cos 40° = 12.9 m/s

Consider first the horizontal motion. For it,

υix = υfx = υx 15.3 m/s

Then x = υx t gives

50 m = (15.3 m/s)t     or     t = 3.27 s

For the vertical motion, taking down as positive,

and to two significant figures, y = 10 m. Since y is positive, and
since down is positive, the ball will hit at 10 m below the original
level.

2.21 [III] (a) Find the range x of a gun that fires a shell with muzzle velocity
υ at an angle of elevation θ. (b) Find the angle of elevation θ of a
gun that fires a shell with a muzzle velocity of 120 m/s and hits a
target on the same level but 1300 m distant. (See Fig. 2-8.)



Fig. 2-8

(a) Let t be the time it takes the shell to hit the target. Then, x = υix
t or t = x/υix. Consider the vertical motion alone, and take up as
positive. When the shell strikes the target,

wherein g is positive. The formula 2 sin θ cos θ = sin 2θ can be
used to simplify this. After substitution,

The maximum range corresponds to θ = 45°, since sin 2θ has a
maximum value of 1 when 2θ = 90° or θ = 45°.

(b) From the range equation found in (a),

Therefore, 2θ = arcsin 0.886 = 62° and so θ = 31°.

SUPPLEMENTARY PROBLEMS

2.22 [I]    A car traveling at 30.0 mph uniformly accelerates up to 50.0 mph
in 20.0 s. What was its average speed in m/s? [Hint: 1 mph =
0.447 07 m/s.]

2.23 [I]    People working for National Geographic dropped a peregrine
falcon from a plane at an altitude of 4572 m (15 000 ft). The bird
dove down reaching a speed of about 81.8 m/s (183 mph).
Determine its acceleration assuming it to be constant. [Hint: The



bird was dropped, not thrown down.]

2.24 [I]    With the previous problem in mind, supposed they dropped a
heavy, smooth rock instead. Neglecting friction, what speed would
it attain?

2.25 [I]    If a vehicle accelerates at 10.0 m/s2 from rest for 20.0 s, how far
will it travel in the process? [Hint: You are given a, ui, and t, and
you need to find s.]

2.26 [I]    A drone on a runway accelerates from rest at a constant rate of 4.00
m/s2. It travels 20.0 m before lifting off the ground. What speed
did it attain as it became airborne? [Hint: You are given ui, a, and
s, and you need to find uf.]

2.27 [I]    For the object whose motion is plotted in Fig. 2-2, find, as best you
can, its instantaneous velocity at the following times: (a) 1.0 s, (b)
4.0 s, and (c) 10 s.

2.28 [I]    A body with initial velocity 8.0 m/s moves along a straight line
with constant positive acceleration and travels 640 m in 40 s. For
the 40 s interval, find (a) the average velocity, (b) the final
velocity, and (c) the acceleration.

2.29 [I]    A truck starts from rest and moves with a constant acceleration of
5.0 m/s2. Find its speed and the distance traveled after 4.0 s has
elapsed.

2.30 [I]    A box slides down an incline with uniform acceleration. It starts
from rest and attains a speed of 2.7 m/s in 3.0 s. Find (a) the
acceleration and (b) the distance moved in the first 6.0 s.

2.31 [I]    A car is accelerating uniformly as it passes two checkpoints that are
30 m apart. The time taken between checkpoints is 4.0 s, and the
car’s speed at the first checkpoint is 5.0 m/s. Find the car’s
acceleration and its speed at the second checkpoint.

2.32 [I]    An auto’s velocity increases uniformly from 6.0 m/s to 20 m/s



while covering 70 m in a straight line. Find the acceleration and
the time taken.

2.33 [I]    A plane starts from rest and accelerates uniformly in a straight line
along the ground before takeoff. It moves 600 m in 12 s. Find (a)
the acceleration, (b) speed at the end of 12 s, and (c) the distance
moved during the twelfth second.

2.34 [I]    A train running along a straight track at 30 m/s is slowed uniformly
to a stop in 44 s. Find the acceleration and the stopping distance.

2.35 [II]  An object moving at 13 m/s slows uniformly at the rate of 2.0 m/s
each second for a time of 6.0 s. Determine (a) its final speed, (b)
its average speed during the 6.0 s, and (c) the distance moved in
the 6.0 s.

2.36 [I]    A body falls freely from rest. Find (a) its acceleration, (b) the
distance it falls in 3.0 s, (c) its speed after falling 70 m, (d) the
time required to reach a speed of 25 m/s, and (e) the time taken to
fall 300 m.

2.37 [I]    A marble dropped from a bridge strikes the water in 5.0 s.
Calculate (a) the speed with which it strikes and (b) the height of
the bridge.

2.38 [II]  A stone is thrown straight downward with initial speed 8.0 m/s
from a height of 25 m. Find (a) the time it takes to reach the
ground and (b) the speed with which it strikes.

2.39 [II]  A baseball is thrown straight upward with a speed of 30 m/s. (a)
How long will it rise? (b) How high will it rise? (c) How long after
it leaves the hand will it return to the starting point? (d) When will
its speed be 16 m/s?

2.40 [II]  A bottle dropped from a balloon reaches the ground in 20 s.
Determine the height of the balloon if (a) it was at rest in the air
and (b) it was ascending with a speed of 50 m/s when the bottle
was dropped.



2.41 [II]  Two balls are dropped to the ground from different heights. One is
dropped 1.5 s after the other, but they both strike the ground at the
same time, 5.0 s after the first was dropped. (a) What is the
difference in the heights from which they were dropped? (b) From
what height was the first ball dropped?

2.42 [II]  A nut comes loose from a bolt on the bottom of an elevator as the
elevator is moving up the shaft at 3.00 m/s. The nut strikes the
bottom of the shaft in 2.00 s. (a) How far from the bottom of the
shaft was the elevator when the nut fell off? (b) How far above the
bottom was the nut 0.25 s after it fell off?

2.43 [I]    A marble, rolling with speed 20 cm/s, rolls off the edge of a table
that is 80 cm high. (a) How long does it take to drop to the floor?
(b) How far, horizontally, from the table edge does the marble
strike the floor?

2.44 [II]  A body projected upward from the level ground at an angle of 50°
with the horizontal has an initial speed of 40 m/s. (a) How long
will it take to hit the ground? (b) How far from the starting point
will it strike? (c) At what angle with the horizontal will it strike?

2.45 [III] A body is projected downward at an angle of 30.0° with the
horizontal from the top of a building 170 m high. Its initial speed
is 40.0 m/s. (a) How long will it take before striking the ground?
(b) How far from the foot of the building will it strike? (c) At what
angle with the horizontal will it strike?

2.46 [II]  A hose lying on the ground shoots a stream of water upward at an
angle of 40° to the horizontal. The speed of the water is 20 m/s as
it leaves the hose. How high up will it strike a wall that is a
horizontal distance of 8.0 m away?

2.47 [II]  A World Series batter hits a home run ball with a velocity of 40 m/s
at an angle of 26° above the horizontal. A fielder who can reach
3.0 m above the ground is backed up against the bleacher wall,
which is 110 m from home plate. The ball was 120 cm above the
ground when hit. How high above the fielder’s glove does the ball



pass?

2.48 [II]  Prove that a gun will shoot three times as high when its angle of
elevation is 60° as when it is 30°, but the bullet will travel the
same horizontal distance.

2.49 [III] A ball is thrown upward at an angle of 30° to the horizontal and
lands on the top edge of a building that is 20 m away. The top
edge is 5.0 m above the throwing point. How fast was the ball
thrown?

2.50 [III] A ball is thrown straight upward with a speed υ from a point h
meters above the ground. Show that the time taken for the ball to
strike the ground  where g is positive.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.22 [I]    17.9 m/s

2.23 [I]    0.732 m/s2

2.24 [I]    300 m/s

2.25 [I]    2.00 × 103 m

2.26 [I]    12.6 m/s

2.27 [I]    (a) ≈3.3 m/s in the positive y-direction; (b) ≈1.0 m/s in the positive
y-direction; (c) ≈0.83 m/s in the negative y-direction

2.28 [I]    (a) 16 m/s; (b) 24 m/s; (c) 0.40 m/s2

2.29 [I]    20 m/s, 40 m

2.30 [I]    (a) 0.90 m/s2; (b) 16 m



2.31 [I]    1.3 m/s2, 10 m/s

2.32 [I]    2.6 m/s2, 5.4 s

2.33 [I]    (a) 8.3 m/s2; (b) 0.10 km/s; (c) 96 m

2.34 [I]    −0.68 m/s2, 0.66 km or 6.6 × 102 m

2.35 [II]  (a) 1.0 m/s; (b) 7.0 m/s; (c) 42 m

2.36 [I]    (a) 9.81 m/s2; (b) 44 m; (c) 37 m/s; (d) 2.6 s; (e) 7.8 s

2.37 [I]    (a) 49 m/s; (b) 0.12 km or 1.2 × 102 m

2.38 [II]  (a) 1.6 s; (b) 24 m/s

2.39 [II]  (a) 3.1 s; (b) 46 m; (c) 6.1 s; (d) 1.4 s and 4.7 s

2.40 [II]  (a) 2.0 km; (b) 0.96 km

2.41 [II]  (a) 63 m; (b) 0.12 km

2.42 [II]  (a) 13.6 m; (b) 14 m

2.43 [I]    (a) 0.40 s; (b) 8.1 cm

2.44 [II]  (a) 6.3 s; (b) 0.16 km; (c) 50°

2.45 [III] (a) 8.27 s; (b) 286 m; (c) 60°

2.46 [II]  5.4 m

2.47 [II]  6.0 m

2.48 [II]  20 m/s



Newton’s Laws

The Mass of an object is traditionally defined as a measure of the inertia of
the object. Inertia is the tendency of a body at rest to remain at rest, and of
a body in motion to continue moving with unchanged velocity. For several
centuries, physicists found it useful to think of mass as a representation of
the amount of or quantity-of-matter, but that idea is (as we have learned
from Special Relativity) no longer tenable. The above definition of mass
will serve us well, but it too is problematic.

The Standard Kilogram is an object whose mass is defined to be 1
kilogram. The masses of other objects are found by comparison with this
mass. A gram mass is equivalent to exactly 0.001 kg.

Force, in general, is the agency of change. In mechanics it is that which
changes the velocity of an object. Force is a vector quantity, having
magnitude and direction. An external force is one whose source lies outside
of the system being considered.

The Net External Force acting on an object causes the object to accelerate
in the direction of that force. The acceleration is proportional to the force
and inversely proportional to the mass of the object. (We now know from
the Special Theory of Relativity that this statement is actually an excellent
approximation applicable to all situations where the speed is appreciably
less than the speed of light, c.)

The Newton is the SI unit of force. One newton (1 N) is that resultant force
that will give a 1-kg mass an acceleration of 1 m/s2. The pound is 4.45 N, or
alternatively a newton is about a quarter of a pound.



Newton’s First Law as he gave it in 1687 is, “Every body preserves in its
state of being at rest or of moving uniformly straight forward, except insofar
as it is compelled to change its state by forces impressed.” Rest and uniform
motion are states of being of a material body, and we will learn from
relativity that they are fundamentally indistinguishable. A body at rest (i.e.,
zero velocity) will remain at rest, and a body in motion (i.e., some nonzero
velocity) will maintain that velocity all by itself forever, unless some
externally applied net force acting on the body causes it to accelerate (i.e.,
change its velocity in any way). Force is the agent of change, and we are
talking about forces applied to a body by some source external to the body.

Newton’s Second Law: As stated by Newton, the Second Law was framed
in terms of the concept of momentum. This rigorously correct statement will
be treated in Chapter 8. Here we focus on a less fundamental, but highly
useful, variation. If the resultant (or net), force  acting on an object of mass
m is not zero, the object accelerates in the direction of the force. The
acceleration  is proportional to the force and inversely proportional to the
mass of the object. With  in newtons, m in kilograms, and  in m/s2, this can
be written as

The acceleration  has the same direction as the resultant force .
The vector equation  = m  can be written in terms of components as

where the forces are the components of the net external force acting on the
object.

Newton’s Third Law: Matter interacts with matter—forces come in pairs.
For each force exerted on one body, there is an equal, but oppositely
directed, force on some other body interacting with it. This is often called
the Law of Action and Reaction. Notice that the action and reaction forces
act on the two different interacting objects.

The Law of Universal Gravitation: When two masses, m and M,
gravitationally interact, they attract each other with forces of equal



magnitude. For point masses (or spherically symmetric homogeneous
bodies), the attractive force FG is given by

where r is the distance between mass centers, and G = 6.672 59 × 10-11 N ·
m2/kg2. When FG is in newtons, m and M are in kilograms, and r is in
meters. This is Newton’s law of gravitation, and it’s said to be “universal”
because it applies to all objects having mass. Although it has been surpassed
by Einstein’s theory of gravitation, this formula will work remarkably well
in all of our applications.

The Weight of an object (FW) is the gravitational force acting downward on
the object. On the Earth, it is the gravitational force exerted on the object by
the planet. Its units are newtons (in the SI) and pounds (in the British
system). Because the Earth is not a perfect uniform sphere, and moreover
because it’s spinning, the weight measured by a scale (often called the
effective weight) will be very slightly different from that defined above.

The Acceleration Due to Gravity: We can distinguish two slightly
different forms of the acceleration due to gravity: one symbolized by g
includes the effects of the Earth’s spin and varies from 9.78 m/s2 at the
equator to 9.83 m/s2 at the pole. It has an average surface-of-the-Earth value
of 9.81 m/s2. The other is g0, the absolute acceleration due only to gravity.
It excludes planetary spin and varies on Earth from 9.81 m/s2 at the equator
to 9.83 m/s2 at the pole. Thus, if the Earth was not spinning g would be
slightly larger than it is now everywhere except at the poles. To make things
as simple as possible—because the variations are small—we will take g = g0
= 9.81 m/s2 everywhere at the Earth’s surface.

Relation Between Mass and Weight: An object of mass m falling freely
toward the Earth is subject to only one force: the pull of gravity, which we
call the weight FW of the object. The object’s acceleration due to FW is the
free-fall acceleration g. Therefore,  = m  provides us with the relation
between F = FW, a = g, and m; it is FW = mg. Because, on average, g = 9.81
m/s2 on Earth, a 1.00-kg object weighs 9.81 N (or 2.20 lb) at the Earth’s



surface. The acceleration due to gravity, and hence the weight of an object,
drops off inversely with the square of it center-to-center separation from the
planet (see Problem 3.40).

The Tensile Force ( T) acting on a string or chain or tendon is the applied
force tending to stretch it. The magnitude of the tensile force is the tension
(FT).

The Friction Force ( f) is a tangential force acting on an object that
opposes the sliding of that object on an adjacent surface with which it is in
contact. The friction force is parallel to the surface and opposite to the
direction of motion or of impending motion. Only when the applied force
exceeds the maximum static friction force will an object begin to slide.

The Normal Force ( N) on an object that is being supported by a surface is
the component of the supporting force that is perpendicular to the surface.

The Coefficient of Kinetic Friction (μk) is defined for the case in which
one surface is sliding across another at constant speed. It is

The Coefficient of Static Friction (μs) is defined for the case in which one
surface is just on the verge of sliding across another surface. It is

where the maximum friction force occurs when the object is just on the
verge of slipping but is nonetheless at rest. With very few exceptions (e.g.,
Teflon), μs > μk.

The free-body diagram is a graphical tool used in the analysis of
mechanical systems. The first step in creating such a diagram for any object
being acted upon by a number of forces is to isolate that object from its
physical environment. This is done by removing all the physical contacts
(ropes, chains, bars, cables, hands, floors, etc.) that act on the body. One
then draws the now free body with all the force vectors produced by those



contacts acting on it. Figure 3-8(a) depicts a mass hanging on a rope. Figure
3-8(b) is the corresponding free-body diagram. Figure 3-17(a) depicts a cart
on an inclined plane. Figure 3-17(b) is the corresponding free-body diagram.
The more complex the mechanical situation, the more powerful the
technique becomes. For the kinds of straightforward systems we will deal
with, the free-body diagrams will be fairly simple.

PROBLEM SOLVING GUIDE

To start applying Newton’s Laws, first determine the direction of motion or
impending motion of the object. Take that to be the positive direction. Then
write down the sum of all the forces acting on the object (including
components) in that direction, with appropriate signs. Set that net force
equal to ma as per Eq. (3.2). If there is friction, it acts parallel to the surface
and always opposes the motion. Friction must be determined using the
normal force via Eq. (3.4) or (3.5), depending on whether the object is
moving or not. Try doing the [I]-level worked-out problems first. Cover the
solutions and look at them only after you’re finished or you get stuck. Wait
a day or two and then go back to any problem you could not do and try
again, and again if need be, until you really master it.

SOLVED PROBLEMS

3.1 [I]     As an introduction to dealing with force vectors, consider the four
coplanar forces acting on a body at point O as shown in Fig. 3-
1(a). Find their resultant graphically.

Starting from O, the four vectors are plotted in turn as drawn in
Fig. 3-1(b). Place the tail end of each vector at the tip end of the
preceding one. The arrow from O to the tip of the last vector
represents the resultant of the vectors.



Fig. 3-1

Measure R from the scale drawing in Fig. 3-1(b) and find it to be
119 N. Angle α is measured by protractor and is found to be 37°.
Hence, the resultant makes an angle θ = 180° – 37° = 143° with
the positive x-axis. The resultant is 119 N at 143°.

3.2 [II]    To gain some practice treating force vectors before we get into
Newton’s Laws, examine the five coplanar forces seen in Fig. 3-
2(a) acting on an object at the origin. Find their resultant
analytically.

(1) First we find the x- and y-components of each force. These
components are as follows:

Notice the + and - signs to indicate direction.

(2) The resultant  has components Rx = ΣFx and Ry = ΣFy, where
we read ΣFx as “the sum of all the x-force components.” We then
have

(3) The magnitude of the resultant is

(4) Finally, sketch the resultant as shown in Fig. 3-2(b) and find its



angle. We see that

from which φ = 29°. Then θ = 360° - 29° = 331°. The resultant
is 6.5 N at 331° (or -29°) or  = 6.5 N—331° FROM + X-AXIS.

Fig. 3-2

3.3 [II]    Solve Problem 3.1 by use of the component method. Give your
answer for the magnitude to two significant figures.

The forces and their components are as follows:

Notice the sign of each component. To find the resultant,

The resultant is shown in Fig. 3-3; there,

Further, tan α = (71.0 N)/(95.0 N), from which α = 37°. Therefore,
the resultant is 119 N at 180° – 37° = 143° or  = 119 N—143°



from +x-axis.

3.4 [II]    A force of 100 N makes an angle of θ with the x-axis and has a
scalar y-component of 30 N. Find both the scalar x-component of
the force and the angle θ. (Remember that the number 100 N has
three significant figures, whereas 30 N has only two.)

Begin your analysis by drawing a diagram. Here the data are
sketched roughly in Fig. 3-4. We wish to find Fx and θ. Since

θ = 17.46°, and thus, to two significant figures, θ = 17°. Then,
using the cosθ,

Fx = (100 N) cos17.46° = 95 N

Fig. 3-3

Fig. 3-4

3.5 [I]     A child pulls on a rope attached to a sled with a force of 60 N. The
rope makes an angle of 40° to the ground. (a) Compute the



effective value of the pull tending to move the sled along the
ground. (b) Compute the force tending to lift the sled vertically.

As depicted in Fig. 3-5, the components of the 60 N force are 39 N
and 46 N. (a) The pull along the ground is the horizontal
component, 46 N. (b) The lifting force is the vertical component,
39 N.

Fig. 3-5

Fig. 3-6

3.6 [I]      A car whose weight is FW is on a ramp, which makes an angle θ to
the horizontal. How large a perpendicular force must the ramp
withstand if it is not to break under the car’s weight?

As rendered in Fig. 3-6, the car’s weight is a force W that pulls
straight down on the car. We take components of  along the
incline and perpendicular to it. The ramp must balance the force



component FW cosθ if the car is not to crash through the ramp. In
other words, the force exerted on the car by the ramp, upwardly
perpendicular to the ramp, is FN and FN = FW cosθ.

3.7 [II]    Three forces that act on a particle are given by 
, and . Find their resultant vector.

Also find the magnitude of the resultant to two significant figures.
If you haven’t learned about basis vertors skip this problem.

We know that

To two significant figures, the three-dimensional Pythagorean
theorem then gives

3.8 [I]     Find the weight on the surface of the Earth of a body whose mass is
(a) 3.00 kg, and (b) 200 g.

The general relation between mass m and weight FW is FW = mg.
In this relation, m must be in kilograms, g in meters per second
squared, and FW in newtons. On Earth, g = 9.81 m/s2. The
acceleration due to gravity varies from place to place in the
universe.

(a) FW = (3.00 kg)(9.81 m/s2) = 29.4 kg · m/s2 = 29.4 N

(b) FW = (0.200 kg)(9.81 m/s2) = 1.96 N

3.9 [I]     A 20.0 kg object that can move freely is subjected to a resultant



force of 45.0 N in the –x-direction. Find the acceleration of the
object.

We make use of the second law in component form, ΣFx = max,
with ΣFx = –45.0 N and m = 20.0 kg. Then

where we have used the fact that 1 N = 1 kg · m/s2. Because the
resultant force on the object is in the -x-direction, its acceleration
is also in that direction.

3.10 [I]    The object in Fig. 3-7(a) weighs 50 N and is supported by a cord.
Find the tension in the cord.

We mentally isolate the object for discussion. Two forces act on it,
the upward pull of the cord and the downward pull of gravity. We
represent the pull of the cord by FT, the tension in the cord. The
pull of gravity, the weight of the object, is FW = 50 N. These two
forces are seen in the free-body diagram of Fig. 3-7(b).

Fig. 3-7

The forces are already in component form and so we can write the



first condition for equilibrium at once, taking up and to the right as
positive directions:

from which FT = 50 N. Thus, when a single vertical cord (called a
hanger) supports a body at equilibrium, the tension in the cord
equals the weight of the body.

3.11 [I]    A 5.0-kg object is to be given an upward acceleration of 0.30 m/s2

by a rope pulling straight upward on it. What must be the tension
in the rope?

The free-body diagram for the object is shown in Fig. 3-8(b). The
tension in the rope is FT, and the weight of the object is FW = mg =
(5.0 kg)(9.81 m/s2) = 49.1 N. Using ΣFy = may with up taken as
positive,

from which FT = 50.6 N = 51 N. As a check, we notice that FT is
larger than FW, as it must be if the object is to accelerate upward.



Fig. 3-8

Fig. 3-9

3.12 [II]  A horizontal force of 140 N is needed to pull a 60.0-kg box across a
horizontal floor at constant speed. What is the coefficient of
friction between floor and box? Determine it to three significant
figures even though that’s quite unrealistic.

The free-body diagram for the box is rendered in Fig. 3-9. Because
the box does not move up or down, ay = 0. Therefore,

from which we find that FN = mg = (60.0 kg)(9.81 m/s2) = 588.6
N. Further, because the box is moving horizontally at constant
speed, ax = 0 and so

from which the friction force is Ff = 140 N. Then

3.13 [II]  The only force acting on a 5.0-kg object has components Fx = 20 N
and Fy = 30 N. Find the acceleration of the object.

Use ∑Fx = max and ∑Fy = may to obtain



These components of the acceleration are shown in Fig. 3-10.
From the figure,

and θ = arctan (6.0/4.0) = 56°.

Fig. 3-10

3.14 [II]  A 600-N object is to be given an acceleration of 0.70 m/s2. How
large an unbalanced force must act upon it?

Notice that the weight, not the mass, of the object is given.
Assuming the weight was measured on the Earth, use FW = mg to
find

Now that we know the mass of the object (61.2 kg) and the desired
acceleration (0.70 m/s2), the force is



F = ma = (61.2 kg)(0.70 m/s2) = 42.8 N or 43 N

3.15 [III] A constant force acts on a 5.0 kg object and reduces its velocity
from 7.0 m/s to 3.0 m/s in a time of 3.0 s. Determine the force.

We must first find the acceleration of the object, which is constant
because the force is constant. Taking the direction of motion as
positive, from Chapter 2

Use F = ma with m = 5.0 kg:

F = (5.0 kg)(–1.33 m/s2) = –6.7 N

The minus sign indicates that the force is a retarding force,
directed opposite to the motion.

3.16 [II]  A 400-g block with an initial speed of 80 cm/s slides along a
horizontal tabletop against a friction force of 0.70 N. (a) How far
will it slide before stopping? (b) What is the coefficient of friction
between the block and the tabletop?
(a) Take the direction of motion as positive. The only unbalanced

force acting on the block is the friction force, –0.70 N.
Therefore,

ΣF = ma     becomes     –0.70 N = (0.400 kg)(a)

from which a = –1.75 m/s2. (Notice that m is always in
kilograms.) To find the distance the block slides, make use of ix
= 0.80 m/s, fx = 0, and a = -1.75 m/s2. Then  yields



(b) Because the vertical forces on the block must cancel, the
upward push of the table FN must equal the weight mg of the
block. Then

3.17 [II]  A 600-kg car is coasting along a level road at 30 m/s. (a) How large
a retarding force (assumed constant) is required to stop it in a
distance of 70 m? (b) What is the minimum coefficient of friction
between tires and roadway if this is to be possible? Assume the
wheels are not locked, in which case we are dealing with static
friction—there’s no sliding.
(a) First find the car’s acceleration from a constant-a equation. It

is known that υix = 30 υfx, = 0, and x = 70 m. Use  to
find

Now write

F = ma = (600 kg)(–6.43 m/s2) – 3858 N or –3.9 kN

(b) Assume the force found in (a) is supplied as the friction force
between the tires and roadway. Therefore, the magnitude of the
friction force on the tires is Ff = 3858 N. The coefficient of
friction is given by υ = Ff/FN, where FN is the normal force. In
the present case, the roadway pushes up on the car with a force
equal to the car’s weight. Therefore,

The coefficient of friction must be at least 0.66 if the car is to
stop within 70 m.



3.18 [I]    An 8000-kg engine pulls a 40 000-kg train along a level track and
gives it an acceleration a1 = 1.20 m/s2. What acceleration (a2)
would the engine give to a 16 000-kg train? Ignore friction.

For a given engine force, the acceleration is inversely proportional
to the total mass. Thus,

3.19 [I]    As shown in Fig. 3-11(a), an object of mass m is supported by a
cord. Find the tension in the cord if the object is (a) at rest, (b)
moving at constant velocity, (c) accelerating upward with
acceleration a = 3g/2, and (d) accelerating downward at a = 0.75g.

Two forces act on the object: the tension FT upward and the
downward pull of gravity mg. They are shown in the free-body
diagram in Fig. 3-11(b). As a rule begin your analysis with a
diagram. Take up as the positive direction and write  in each
case.

Notice that the tension in the cord is less than mg in part (d); only
then can the object have a downward acceleration. Can you
explain why FT = 0 if ay = -g?



Fig. 3-11

Fig. 3-12

3.20 [I]    A tow rope will break if the tension in it exceeds 1500 N. It is used
to tow a 700-kg car along level ground. What is the largest
acceleration the rope can give to the car? (Remember that 1500
has four significant figures; see Appendix A.)

The forces acting on the car are shown in Fig. 3-12. Only the x-
directed force is of importance, because the y-directed forces
balance each other. Indicating the positive direction with a + sign
and a little arrow, we write,

from which a = 2.14 m/s2.



3.21 [I]    Compute the least acceleration with which a 45-kg woman can
slide down a rope if the rope can withstand a tension of only 300
N.

The weight of the woman is mg = (45 kg)(9.81 m/s2) = 441 N.
Because the rope can support only 300 N, the unbalanced
downward force F on the woman (i.e., the accelerating force) must
be at least 441 N - 300 N = 141 N. Her minimum downward
acceleration is then

3.22 [II]  A 70-kg box is slid along the floor by a 400-N force as shown in
Fig. 3-13. The coefficient of friction between the box and the floor
is 0.50 when the box is sliding. Find the acceleration of the box.

Fig. 3-13

Since the y-directed forces must balance,

FN = mg = (70 kg)(9.81 m/s2) = 686.7 N

But the friction force Ff is given by

Ff = kFN = (0.50)(687 N) = 343.4 N

Now write ∑Fx = max for the box, taking the direction of motion
as positive:



3.23 [II]  Suppose, as depicted in Fig. 3-14, that a 70-kg box is pulled by a
400-N force at an angle of 30° to the horizontal. The coefficient of
kinetic friction is 0.50. Find the acceleration of the box.

Fig. 3-14

Because the box does not move up or down, we have ∑Fy = may =
0. From Fig. 3-14, this equation is

But mg = (70 kg)(9.81 m/s2) = 686.7 N, and it follows that FN =
486.7 N.

Next find the friction force acting on the box:

Ff = μk FN = (0.50)(486.7 N) = 243.4 N

Now write ∑Fx = max for the box. It is

(346 - 243.4) N = (70 kg)(ax)

from which ax = 1.466 m/s2 or 1.5 m/s2.



3.24 [III] A car coasting at 20 m/s along a horizontal road has its brakes
suddenly applied and eventually comes to rest. What is the
shortest distance in which it can be stopped if the friction
coefficient between tires and road is 0.90? Assume that all four
wheels brake identically. If the brakes don’t lock, the car stops via
static friction.

The friction force at one wheel, call it wheel 1, is

Ff1 = μs FN1 = μs FW1

where FW1 is the weight carried by wheel 1. We obtain the total
friction force Ff by adding such terms for all four wheels:

Ff = μs FW1 + μs FW2 + μs FW3 + μs FW4 = μs (FW1 + FW2 + FW3 + FW4)= μs
FW

where FW is the total weight of the car. (Notice that we are
assuming optimal braking at each wheel.) This friction force is the
only unbalanced force on the car (we neglect air friction). Writing
F = ma for the car with F replaced by –sFW gives –μs FW = ma,
where m is the car’s mass and the positive direction is taken as the
direction of motion. However, FW = mg; so the car’s acceleration
is

We can determine how far the car went before stopping by solving
the constant-a motion problem. Knowing that υi = 20m/s, υf = 0,
and a = –8.829 m/s2, we find from  that



If the four wheels had not all been braking optimally, the stopping
distance would have been longer.

3.25 [II]  As seen in Fig. 3-15, a force of 400 N pushes on a 25-kg box.
Starting from rest, the box uniformly speeds up and achieves a
velocity of 2.0 m/s in a time of 4.0 s. Compute the coefficient of
kinetic friction between box and floor.

Fig. 3-15

The box experiences an unbalanced horizontal force, which is the
x-component of the applied force minus the friction force. This
resultant force, , accelerates the box horizontally in the +x-
direction. We can find a from the uniformly accelerated motion
and, with that and Newton’s Second Law, determine ∑Fx.

To determine a, make use of the fact that υi = 0, υf = 20m/s, t = 4.0
s, and υf = υi + at, from which it follows that

and so ax = a = 0.50 m/s2. From Fig. 3-15,



To find the coefficient of friction, recall that μk = Ff/FN. We need
FN, which can be obtained from , since no vertical motion
occurs. From Fig. 3-15,

Finally,

3.26 [I]    A 200-N wagon is to be pulled up a 30° incline at constant speed.
How large a force parallel to the incline is needed if friction
effects are negligible?

The situation is shown in Fig. 3-16(a). Because the wagon moves
at a constant speed along a straight line, its velocity vector is
constant. Therefore, the wagon is in translational equilibrium, and
the first condition for equilibrium applies to it.

We isolate the wagon as the object. Three non-negligible forces
act on it: (1) the pull of gravity FW (its weight), directed straight
down; (2) the applied force F exerted on the wagon parallel to the
incline to pull it up the incline; (3) the push FN of the incline that
supports the wagon. These three forces are shown in the free-body
diagram in Fig. 3-16.

For situations involving inclines, it is convenient to take the x-axis
parallel to the incline and the y-axis perpen-dicular to it. After
taking components along these axes, we can write the first
condition for equilibrium:



Solving the first equation and recalling that FW = 200 N, we find
that F = 0.50 FW. The required pulling force to two significant
figures is 0.10 kN.

Fig. 3-16

3.27 [II]  A 20-kg box sits on an incline as illustrated in Fig. 3-17. The
coefficient of kinetic friction between box and incline is 0.30. Find
the acceleration of the box down the incline.

In solving inclined-plane problems, take the x- and y-axes as
shown in the figure, parallel and perpendicular to the incline. We
find the acceleration by writing ∑Fx = max. But first determine the
friction force Ff. Using the fact that cos 30° = 0.866,

from which FN = (0.866)(20 kg)(9.81 m/s2) = 169.9 N. Now find
Ff from

Ff = μk FN = (0.30)(169.9 N) = 50.97 N

Writing ,

Ff - 0.50 mg = max      or      50.97 N - (0.50)(20)(9.81) N = (20 kg)(ax)

from which ax = -2.36 m/s2. The box accelerates down the incline
at 2.4 m/s2.



Fig. 3-17

3.28 [III] When a force of 500 N pushes on a 25-kg box as shown in Fig. 3-
18, the resulting acceleration of the box up the incline is 0.75 m/s2.
Compute the coefficient of kinetic friction between the box and
the incline.

The acting forces and their components are shown in Fig. 3-18.
Notice how the x- and y-axes are taken. Since the box moves up
the incline, the friction force (which always acts to retard the
motion) is directed down the incline.

First find Ff by writing ∑Fx = max. From Fig. 3-18, using sin 40° =
0.643,

from which Ff = 206.6 N.

We also need FN. Writing ∑Fy = may = 0, and using cos 40° =
0.766,



Fig. 3-18

3.29 [III] Two blocks, of masses m1 and m2, moving in the x-direction are
pushed by a force F as shown in Fig. 3-19. The coefficient of
friction between each block and the table is 0.40. (a) What must
be the value of F if the blocks are to have an acceleration of 200
cm/s2? How large a force does m1 then exert on m2? Use m1 = 300
g and m2 = 500 g. Remember to work in SI units.

The friction forces on the blocks are Ff1 = 0.40m1g and Ff2 =
0.40m2 g. Take the two blocks in combination as the object for
discussion; the horizontal forces on the object from outside (i.e.,
the external forces on it) are F, Ff1, and Ff2. Although the two
blocks do push on each other, those pushes are internal forces;
they are not part of the unbalanced external force on the two-mass
object. For that object,

(a) Solving for F and substituting known values

F = 0.40 g(m1 + m2) +(m1 + m2)ax = 3.14 N + 1.60 N = 4.7 N

(b) Now consider block m2 alone. The forces acting on it in the x-
direction are the push of block m1 on it (which we represent by
Fb) and the retarding friction force Ff2 = 0.40m2 g. Then, for it,



We know that ax = 2.0 m/s2 and so

Fb = Ff2 + m2 ax = 1.96 N + 1.00 N = 2.96 N = 3.0 N

Fig. 3-19

Fig. 3-20

3.30 [II]  A cord passing over a light frictionless pulley has a 7.0-kg mass
hanging from one end and a 9.0-kg mass hanging from the other,
as seen in Fig. 3-20. (This arrangement is called Atwood’s
machine.) Find the acceleration of the masses and the tension in
the cord.

Because the pulley is easily turned, the tension in the cord will be
the same on each side. The forces acting on each of the two
masses are drawn in Fig. 3-20. Recall that the weight of an object



is mg.

It is convenient in situations involving objects connected by cords
to take the overall direction of motion of the system as the positive
direction. That’s often indicated by the direction of motion of the
pulley when the system is let free to move. In the present case, the
pulley would turn clockwise, and so we take up positive for the
7.0-kg mass, and down positive for the 9.0-kg mass. (If we do this,
the acceleration will be positive for each mass. Because the cord
doesn’t stretch, the accelerations are numerically equal.) Writing
∑Fy = may for each mass in turn,

Add these two equations and the unknown FT drops out, giving

(9.0 - 7.0)(9.81) N = (16 kg)(a)

for which a = 1.23 m/s2 or 1.2 m/s2. Now substitute 1.23 m/s2 for
a in either equation and obtain FT = 77 N.

3.31 [III] In Fig. 3-21, the coefficient of kinetic friction between block-A and
the table is 0.20. Also, mA = 25 kg, and mB = 15 kg. How far will
object-B drop in the first 3.0 s after the system is released?



Fig. 3-21

To find how far object-B falls, we will need to determine the
acceleration of the system.

Since, for block-A, there is no motion vertically, the normal force
is

To calculate the acceleration of the system, apply F = ma to each
block in turn. Taking the direction of motion to be positive, as
indicated in Fig. 3-21(a),

Eliminate FT by adding the two equations. Then, solving for a, we
find a = 2.45 m/s2. We now have to deal with a constant-
acceleration motion problem where a = 2.45 m/s2, i = 0, and t =
3.0 s. Hence,



This is the distance B falls in the first 3.0 s.

3.32 [II]  How large a horizontal force in addition to FT must pull on block-A
in Fig. 3-21 to give it an acceleration of 0.75 m/s2 toward the left?
Assume, as in Problem 3.31, that μk = 0.20, mA = 25 kg, and mB =
15 kg.

Redraw Fig. 3-21 for this case, including a force F pulling toward
the left on A. In addition, the retarding friction force Ff must be
reversed in direction. As in Problem 3.31, Ff = 49.1 N.

Write F = ma for each block in turn, taking the direction of motion
(to the left and up) to be positive. We have

Solve the last equation for FT and substitute in the previous
equation. Then solve for the single unknown F, and find it to be
226 N or 0.23 kN.

3.33 [II]  The coefficient of static friction between a box and the flat bed of a
truck is 0.60. What is the maximum acceleration the truck can
have along level ground if the box is not to slide?

The box experiences only one x-directed force, the friction force.
When the box is on the verge of slipping, Ff = μsFW, where FW is
the weight of the box.

As the truck accelerates, the friction force must cause the box to
have the same acceleration as the truck; otherwise, the box will
slip. When the box is not slipping, ∑Fx = max applied to the box



gives Ff = max. However, if the box is on the verge of slipping, Ff
= μsFW so that μsFW = max. Because FW = mg,

as the maximum acceleration without slipping.

3.34 [III] In Fig. 3-22, the two boxes have identical masses of 40 kg. Both
experience a sliding friction force with μk = = 0.15. Find the
acceleration of the boxes and the tension in the tie cord.

Fig. 3-22

Using Ff = μkFN, the friction forces on the two boxes are

FfA = (0.15)(mg)      and      FfB = (0.15)(0.866 mg)

But m = 40 kg, so FfB = 58.9 N and FfB = 51.0 N.

Now apply ∑Fx = max to each block in turn, taking the direction of



motion of the system as positive. We want to sum the forces
parallel to each surface, and that’s often indicated using a
subscript || symbol. Accordingly,

Solving these two equations for a and FT gives a = 1.1 m/s2 and
FT = 0.10 kN.

3.35 [III] In the system shown in Fig. 3-23(a), force F accelerates block-1 of
mass m1 to the right. Write an expression for its acceleration in
terms of F and the coefficient of friction μk at the contact surfaces.

Fig. 3-23

The horizontal forces on the blocks are shown in Fig. 3-23(b) and
(c). Block-2 of mass m2 is pressed against block-1 by its weight
m2g. This is the normal force where m1 and m2 are in contact, so
the friction force there is Ff2 = μkm2g. At the bottom surface of m1,
however, the normal force is (m1 + m2)g. Hence, . We
now write ∑Fx = max for each block, taking the direction of
motion of the system as positive (i.e., to the left on block-2 and to
the right on block-1):

Eliminate FT by adding the two equations to obtain



3.36 [II]  In the system of Fig. 3-24, friction and the mass of the pulley are
both negligible. Find the acceleration of m2 if m1 = 300 g, m2 =
500 g, and F = 1.50 N.

Fig. 3-24

Notice that m1 has twice as large an acceleration as m2. (When the
pulley moves a distance d, m1 moves a distance 2d.) Also notice
that the tension FT1 in the cord pulling m1 is half FT2, that in the
cord pulling the pulley, because the total force on the pulley must
be zero. (F = ma tells us that this is so because the mass of the
pulley is zero.) Writing ∑Fx = max for each mass,

However, we know that  and so the first equation gives FT2 =
4m1a. Substitution in the second equation yields

3.37 [III] In Fig. 3-25, the weights of the objects are 200 N and 300 N. The
pulleys are essentially frictionless and massless. Pulley P1 has a
stationary axle, but pulley P2 is free to move up and down. Find
the tensions FT1 and FT2 and the acceleration of each body. Only
do this problem if you are already familiar with the action of
pulleys.



Fig. 3-25

Mass B will rise and mass A will fall. You can see this by noticing
that the forces acting on pulley P2 are 2FT2 up and FT1 down.
Since the pulley has no mass, it can have no acceleration, and so
FT1 = 2FT2 (the inertialess object transmits the tension). Twice as
large a force is pulling upward on B as on A.

Let a be the downward acceleration of A. Then a/2 is the upward
acceleration of B. (Why?) Now write ∑Fy = may for each mass in
turn, taking the direction of motion as positive in each case. We
have

But m = FW/g and so mA = (200/9.81) kg and MB = (300/9.81) kg.
Further FT2 = 2FT2. Substitution of these values in the two
equations allows us to compute FT2 and then FT1 and a. The
results are



FT1 = 327 N      FT2 = 164 N a = 1.78 m/s2

3.38 [II]  The Moon, whose mass is 7.35 × 1022 kg, orbits the Earth, whose
mass is 5.98 × 1024 kg, at a mean distance of 3.85 × 108 m. It is
held in a nearly circular orbit by the Earth-Moon gravitational
interaction. Determine the force of gravity due to the planet acting
on the Moon.

From the universal law of gravitation

we get

which yields

FG = 1.98 × 1020 N

This is also the force on the Earth due to the Moon, and the force
on the Moon due to the Earth.

3.39 [II]  Compute the approximate mass of the Earth, assuming it to be a
sphere of radius 6370 km. Ignore the planet’s spin. Use g = 9.81
m/s2 and give your answer to three significant figures.

Let ME be the mass of the Earth, and m the mass of an object. The
weight of the object on the planet’s surface is equal to mg. It is
also equal to the gravitational force , where RE is the Earth’s
radius. Hence,



3.40 [II]  Consider an essentially spherical homogeneous celestial body of
mass M. The acceleration due to gravity in its vicinity beyond its
surface at a distance R from its center is gR. Show that

Notice that the acceleration drops off as 1/R2.

Imagine an object of mass m at a distance R from the center of our
celestial body. Its weight is FW = mgR, but that’s also the
gravitation force on it due to the mass M, that is, FW = FG. Hence,

3.41 [II]  The mythical planet Mongo has twice the mass and twice the radius
of Earth. Compute the acceleration due to gravity at its surface.
Ignore the Earth’s spin and use g = 9.81 m/s2.

We know from Problem 3.40 that in general

Then for the Earth at its surface

where RE is the Earth’s radius and ME is its mass. For Mongo



and

or

SUPPLEMENTARY PROBLEMS

3.42 [I]    Two forces act on a point object as follows: 100 N at 170.0° and
100 N at 50.0°. Find their resultant.

3.43 [I]    Compute algebraically the resultant of the following coplanar
forces: 100 N at 30°, 141.4 N at 45°, and 100 N at 240°. Check
your result graphically.

3.44 [I]    Two forces, 80 N and 100 N, acting at an angle of 60° with each
other, pull on an object. (a) What single force would replace the
two forces? (b) What single force (called the equilibrant) would
balance the two forces? Solve algebraically.

3.45 [I]    Find algebraically the (a) resultant and (b) equilibrant (see Problem
3.44) of the following coplanar forces: 300 N at exactly 0°, 400 N
at 30°, and 400 N at 150°.

3.46 [I]    Having hauled it to the top of a tilted driveway, a child is holding a
wagon from rolling back down. The driveway is inclined at 20° to
the horizontal. If the wagon weighs 150 N, with what force must
the child pull on the handle if the handle is parallel to and pointing
up the incline?



3.47 [II]  Repeat Problem 3.46 if the handle is now raised at an angle of 30°
above the incline.

3.48 [I]    A force of 100 lb acting on a body weighing 500 lb causes the body
to accelerate uniformly. What would happen to the acceleration if
the force is increased to 200 lb? [Hint: Units are not important
here as long as you are consistent.] Assume no friction.

3.49 [I]    An unknown force acting on a 50.0-g body floating in space
produces a constant acceleration of 20.0 cm/s2. If the same force is
now made to act on a different body, also in space, producing a
constant acceleration of 40.0 cm/s2, what is the mass of that body?

3.50 [I]    Once ignited, a small rocket motor on a spacecraft exerts a constant
force of 10 N for 7.80 s. During the burn, the rocket causes the
100-kg craft to accelerate uniformly. Determine that acceleration.

3.51 [II]  Typically, a bullet leaves a standard 45-caliber pistol (5.0-in. barrel)
at a speed of 262 m/s. If it takes 1 ms to traverse the barrel,
determine the average acceleration experienced by the 16.2-g
bullet within the gun, and then compute the average force exerted
on it.

3.52 [I]    A force acts on a 2-kg mass and gives it an acceleration of 3 m/s2.
What acceleration is produced by the same force when acting on a
mass of (a) 1 kg? (b) 4 kg? (c) How large is the force?

3.53 [I]    An object has a mass of 300 g. (a) What is its weight on Earth? (b)
What is its mass on the Moon? (c) What will be its acceleration on
the Moon under the action of a 0.500-N resultant force?

3.54 [I]    A horizontal cable pulls a 200-kg cart along a horizontal track. The
tension in the cable is 500 N. Starting from rest, (a) How long will
it take the cart to reach a speed of 8.0 m/s? (b) How far will it have
gone?

3.55 [II]  A 900-kg car is going 20 m/s along a level road. How large a
constant retarding force is required to stop it in a distance of 30 m?



[Hint: First find its deceleration.]

3.56 [II]  A 12.0-g bullet is accelerated from rest to a speed of 700 m/s as it
travels 20.0 cm in a gun barrel. Assuming the acceleration to be
constant, how large was the accelerating force? [Hint: Be careful
with units.]

3.57 [II]  A 20-kg crate hangs at the end of a long rope. Find its acceleration
(magnitude and direction) when the tension in the rope is (a) 250
N, (b) 150 N, (c) zero, (d) 196 N.

3.58 [II]  A 5.0-kg mass hangs at the end of a cord. Find the tension in the
cord if the acceleration of the mass is (a) 1.5 m/s2 up, (b) 1.5 m/s2

down, (c) 9.81 m/s2 down. Don’t forget gravity.

3.59 [II]  A 700-N man stands on a scale on the floor of an elevator. The
scale records the force it exerts on whatever is on it. What is the
scale reading if the elevator has an acceleration of (a) 1.8 m/s2 up?
(b) 1.8 m/s2 down? (c) 9.8 m/s2 down?

3.60 [II]  Using the scale described in Problem 3.59, a 65.0-kg astronaut
weighs himself on the Moon, where g = 1.60 m/s2. What does the
scale read?

3.61 [II]  A cord passing over a frictionless, massless pulley has a 4.0-kg
object tied to one end and a 12-kg object tied to the other.
Compute the acceleration and the tension in the cord.

3.62 [II]  An elevator starts from rest with a constant upward acceleration. It
moves 2.0 m in the first 0.60 s. A passenger in the elevator is
holding a 3.0-kg package by a vertical string. What is the tension
in the string during the accelerating process?

3.63 [II]  Just as her parachute opens, a 60-kg parachutist is falling at a speed
of 50 m/s. After 0.80 s has passed, the chute is fully open and her
speed has dropped to 12.0 m/s. Find the average retarding force
exerted upon the chutist during this time if the deceleration is
uniform.



3.64 [II]  A 300-g mass hangs at the end of a string. A second string hangs
from the bottom of that mass and supports a 900-g mass. (a) Find
the tension in each string when the masses are accelerating upward
at 0.700 m/s2. Don’t forget gravity. (b) Find the tension in each
string when the acceleration is 0.700 m/s2 downward.

3.65 [II]  A 20-kg wagon is pulled along the level ground by a rope inclined
at 30° above the horizontal. A friction force of 30 N opposes the
motion. How large is the pulling force if the wagon is moving with
(a) constant speed and (b) an acceleration of 0.40 m/s2?

3.66 [II]  A 12-kg box is released from the top of an incline that is 5.0 m long
and makes an angle of 40° to the horizontal. A 60-N friction force
impedes the motion of the box. (a) What will be the acceleration
of the box, and (b) how long will it take to reach the bottom of the
incline?

3.67 [I]    A wooden crate weighing 1000 N is at rest on a wooden floor.
What is the smallest horizontal force needed to move it? [Hint:
Use Table 3-1.]

3.68 [I]    Someone wearing rubber-soled shoes is standing still on a wooden
floor. If a horizontal push of 800 N just gets him sliding, how
much does he weigh? [Hint: Use Table 3-1 and give your answer
to one significant figure.]

TABLE 3-1
Approximate Friction Coefficients*



3.69 [I]    A standing 580-N woman wearing climbing boots is to be pulled at
a constant speed by a horizontal force along a flat horizontal rock
surface. What force will be necessary? [Hint: Use Table 3-1.]

3.70 [II]  For the situation outlined in Problem 3.66, what is the coefficient of
friction between the box and the incline?

3.71 [II]  An inclined plane makes an angle of 30° with the horizontal. Find
the constant force, applied parallel to the plane, required to cause a
15-kg box to slide (a) up the plane with acceleration 1.2 m/s2 and
(b) down the incline with acceleration 1.2 m/s2. Neglect friction
forces.

3.72 [II]  A horizontal force F is exerted on a 20-kg box to slide it up a 30°
incline. The friction force retarding the motion is 80 N. How large
must F be if the acceleration of the moving box is to be (a) zero
and (b) 0.75 m/s2? The situation resembles that of Fig. 3-18.

3.73 [II]  An inclined plane making an angle of 25° with the horizontal has a



pulley at its top. A 30-kg block on the plane is connected to a
freely hanging 20-kg block by means of a cord passing over the
pulley. Compute the distance the 20-kg block will fall in 2.0 s
starting from rest. Neglect friction.

3.74 [III] Repeat Problem 3.73 if the coefficient of friction between block
and plane is 0.20.

3.75 [III] A horizontal force of 200 N is required to cause a 15-kg block to
slide up a 20° incline with an acceleration of 25 cm/s2. Find (a) the
friction force on the block and (b) the coefficient of friction.

3.76 [II]  Find the acceleration of the blocks in Fig. 3-26 if friction forces are
negligible. What is the tension in the cord connecting them?

Fig. 3-26

3.77 [III] Repeat Problem 3.76 if the coefficient of kinetic friction between
the blocks and the table is 0.30.

3.78 [III] How large a force F is needed in Fig. 3-27 to pull out the 6.0-kg
block with an acceleration of 1.50 m/s2 if the coefficient of friction
at its surfaces is 0.40?

Fig. 3-27



Fig. 3-28

3.79 [III] In Fig. 3-28, how large a force F is needed to give the blocks an
acceleration of 3.0 m/s2 if the coefficient of kinetic friction
between blocks and table is 0.20? How large a force does the 1.50-
kg block then exert on the 2.0-kg block?

3.80 [III] (a) What is the smallest force parallel to a 37° incline needed to
keep a 100-N weight from sliding down the incline if the
coefficients of static and kinetic friction are both 0.30? (b) What
parallel force is required to keep the weight moving up the incline
at constant speed? (c) If the parallel pushing force is 94 N, what
will be the acceleration of the object? (d) If the object in (c) starts
from rest, how far will it move in 10 s?

3.81 [III] A 5.0-kg block rests on a 30° incline. The coefficient of static
friction between the block and the incline is 0.20. How large a
horizontal force must push on the block if the block is to be on the
verge of sliding (a) up the incline and (b) down the incline?

3.82 [III] Three blocks with masses 6.0 kg, 9.0 kg, and 10 kg are connected
as shown in Fig. 3-29. The coefficient of friction between the table
and the 10-kg block is 0.20. Find (a) the acceleration of the system
and (b) the tension in the cord on the left and in the cord on the
right.



Fig. 3-29

3.83 [I]    Floating in space far from anything else are two spherical asteroids,
one having a mass of 20 × 1010 kg and the other a mass of 40 ×
1010 kg. Compute the force of attraction on each one due to
gravity when their center-to-center separation is 10 × 106 m.

3.84 [I]    Two cannonballs that each weigh 4.00 kN on Earth are floating in
space far from any other objects. Determine the mutually attractive
gravitational force acting on them when they are separated, center-
to-center, by 10.0 m.

3.85 [I]    Imagine a planet and its moon gravitationally interacting with a
force FG. What would be the value of the gravitational force if the
moon were moved out to three times the original center-to-center
distance?

3.86 [I]    Two NASA vehicles separated by a center-to-center distance R are
floating in space. They each experience an attractive gravitational
force FG, which must be kept constant. If the masses of both crafts
are to be doubled, what must happen to their separation?

3.87 [I]    Suppose you are designing a small, artificial nonspinning planet of
mass mp and radius Rp. What would happen to the acceleration due
to gravity at the planet’s surface if you double its mass keeping the
radius constant?

3.88 [I]    Suppose you are designing an artificial nonspinning planet of mass



mp and diameter Dp. What would happen to the acceleration due to
gravity at the planet’s surface if you double its diameter keeping
its mass constant? [Hint: How does the radius change when you
double the diameter?]

3.89 [I]    Suppose you are designing an artificial nonspinning planet of mass
mp and radius Rp. What would happen to the acceleration due to
gravity at the planet’s surface if you double its radius and triple its
mass?

3.90 [II]  A space station that weighs 10.0 MN on Earth is positioned at a
distance of ten Earth radii from the center of the planet. What
would it weigh out there in space—that is, what is the value of the
gravity force pulling it toward Earth?

3.91 [II]  An object that weighs 2700 N on the surface of the Earth is raised
to a height (i.e., altitude) of two Earth radii above the surface.
What will it weigh up there?

3.92 [II]  Imagine a planet having a mass twice that of Earth and a radius
equal to 1.414 times that of Earth. Determine the acceleration due
to gravity at its surface.

3.93 [II]  The Earth’s radius is about 6370 km. An object that has a mass of
20 kg is taken to a height of 160 km above the Earth’s surface. (a)
What is the object’s mass at this height? (b) How much does the
object weigh (i.e., how large a gravitational force does it
experience) at this height?

3.94 [II]  A man who weighs 1000 N on Earth stands on a scale on the
surface of the mythical nonspinning planet Mongo. That body has
a mass that is 4.80 times Earth’s mass and a diameter, that is 0.500
times Earth’s diameter. Neglecting the effect of the Earth’s spin,
how much does the scale read?

3.95 [II]  The radius of the Earth is about 6370 km, while that of Mars is
about 3440 km. If an object weighs 200 N on Earth, what would it
weigh, and what would be the acceleration due to gravity, on



Mars? The mass of Mars is 0.11 that of Earth. Neglect planetary
rotations and local mass variations.

3.96 [II]  The fabled planet Dune has a diameter eight times that of Earth and
a mass twice as large. If a robot weighs 1800 N on the surface of
(nonspinning) Dune, what will it weigh at the poles on Earth?
Take our planet to be a sphere.

3.97 [III] An astronaut weighs 480 N on Earth. She visits the planet Krypton,
which has a mass and diameter each ten times that of Earth.
Determine her weight at a distance of two Kryptonian radii above
that fictional planet.

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.42 [I]    100 N at 110°

3.43 [I]    0.15 kN at 25°

3.44 [I]    (a) : 0.16 kN at 34° with the 80 N force; (b) – : 0.16 kN at 214°
with the 80 N force

3.45 [I]    (a) 0.50 kN at 53°; (b) 0.50 kN at 233°

3.46 [I]    51 N

3.47 [II]  59 N

3.48 [I]    Acceleration would double.

3.49 [I]    25.0 g

3.50 [I]    0.10 m/s2

3.51 [II]  3 × 105 m/s2; 0.4 × 102 N



3.52 [I]    (a) 6 m/s2; (b) 2 m/s2; (c) 6 N

3.53 [I]    (a) 2.94 N; (b) 0.300 kg; (c) 1.67 m/s2

3.54 [I]    (a) 3.2 s; (b) 13 m

3.55 [II]  6.0 kN

3.56 [II]  14.7 kN

3.57 [II]  (a) 2.7 m/s2 up; (b) 2.3 m/s2 down; (c) 9.8 m/s2 down; (d) zero

3.58 [II]  (a) 57 N; (b) 42 N; (c) zero

3.59 [II]  (a) 0.83 kN; (b) 0.57 kN; (c) zero

3.60 [II]  104 N

3.61 [II]  4.9 m/s2, 59 N

3.62 [II]  63 N

3.63 [II]  2850 N + 588 N = 3438 N = 3.4 kN

3.64 [II]  (a) 12.6 N and 9.46 N; (b) 10.9 N and 8.20 N

3.65 [II]  (a) 35 N; (b) 44 N

3.66 [II]  (a) 1.3 m/s2; (b) 2.8 s

3.67 [I]    500 N

3.68 [I]    9 × 102 N

3.69 [I]    5 × 102 N

3.70 [II]  0.67

3.71 [II]  (a) 92 N; (b) 56 N



3.72 [II]  (a) 0.21 kN; (b) 0.22 kN

3.73 [II]  2.9 m

3.74 [III] 0.74 m

3.75 [III] (a) 0.13 kN; (b) 0.65

3.76 [II]  3.3 m/s2, 13 N

3.77 [III] 0.39 m/s2, 13 N

3.78 [III] 48 N

3.79 [III] 22 N, 15 N

3.80 [III] (a) 36 N; (b) 84 N; (c) 0.98 m/s2 up the plane; (d) 49 m

3.81 [III] (a) 43 N; (b) 16.6 N

3.82 [III] (a) 0.39 m/s2; (b) 61 N, 85 N

3.83 [I]    0.053 N on each

3.84 [I]    1.11 × 10-7 N

3.85 [I]    1/9 original force

3.86 [I]    It must double.

3.87 [I]    It doubles.

3.88 [I]    It becomes 1/4 original value.

3.89 [I]    It becomes 3/4 original value.

3.90 [II]  10.0 × 104 N

3.91 [II]  300 N



3.92 [II]  9.81 m/s2

3.93 [II]  (a) 20 kg; (b) 0.19 kN

3.94 [II]  19.2 kN

3.95 [II]  75 N, 3.7 m/s2

3.96 [II]  57.6 kN

3.97 [III] 5.3 N



Equilibrium Under the Action of Concurrent
Forces

Concurrent Forces are forces whose lines of action all pass through a
common point. The forces acting on a point object are obviously concurrent
because they are all applied at that same point.

An Object Is in Equilibrium under the action of concurrent forces
provided it is not accelerating. It may be traveling at a constant speed, and
yet as long as a = 0, the object is in equilibrium.

The First Condition for Equilibrium is the requirement that  or, in
component form,

That is, the resultant of all external forces acting on the object must be zero.
This condition is sufficient for equilibrium when the external forces are
concurrent. A second condition must also be satisfied if an object is to be in
equilibrium under nonconcurrent forces; it is discussed in Chapter 5.

Problem Solution Method (Concurrent Forces):

(1) Isolate the object for discussion.
(2) Show the forces acting on the isolated object in a diagram (the free-

body diagram).
(3) Find the rectangular components of each force.
(4) Write the first condition for equilibrium in equation form.



(5) Solve for the required quantities.

The Weight of an Object ( W) is essentially the force with which gravity
pulls downward upon it. Recall from the previous chapter that FW = mg.

The Tensile Force ( T) acting on a string or cable or chain (or, indeed, on
any structural member) is the applied force tending to stretch it. The scalar
magnitude of the tensile force is the tension (FT). When an object is in
tension, the forces acting on it point outward away from its center, and the
forces it exerts point inward toward its center. Remember that ropes, cables,
and chains can only function in tension.

The Friction Force ( f) is a tangential force acting on an object that
opposes the sliding of that object across an adjacent surface with which it is
in contact. The friction force is parallel to the surface and opposite to the
direction of motion or of impending motion.

The Normal Force ( N) on an object that is interacting with a surface is the
component of the force exerted by the surface that is perpendicular to the
surface.

Pulleys: When a system of several frictionless light-weight pulleys in
equilibrium has a single continuous rope wound around it, the tension in
each length of the rope is the same and it equals the force applied to the end
of the rope (F) by some external agency (usually a person). Thus, when a
load is supported by N lengths of a continuous rope, the net force delivered
to the load, the output force, is NF. Often the pulley attached to the load
moves with the load and we need only count up the number of lengths of
rope (N) acting on that pulley to determine the output force. There’s more
material on pulleys in Chapter 7; see, for example, Problems 7.5 and 7.12.

PROBLEM SOLVING GUIDE

(1) Determine the object (a hook, a knot, a body, etc.) on which the
forces of interest act.

(2) Draw a free-body diagram of that object.



(3) Find the x- and y-components of all the forces.
(4) Apply Eq. (4.1) with the appropriate signs.
(5) Solve for the required quantities. In two dimensions, you will have

two equations and can solve for two unknowns.
Do not round off numbers in the middle of a calculation.

SOLVED PROBLEMS

4.1 [II]     In Fig. 4-1(a), the tension in the horizontal cord is 30 N as shown.
Find the weight of the hanging body.

The tension in cord-1 is equal to the weight of the body hanging
from it. Therefore, FT1 = FW, and we wish to find FT1 or FW.

Notice that the unknown force FT1 and the known force of 30 N
both pull on the knot at point P. It therefore makes sense to isolate
the knot at P as our point object for which we will write the two
sum-of-the-forces-equals-zero equations. The free-body diagram
showing the forces on the knot is drawn as in Fig. 4-1(b). The
force components are also shown there.

We next write the first condition for equilibrium for the knot.
From the free-body diagram,

Solving the first equation for FT2 gives FT2 = 39.2 N. Substituting
this value in the second equation yields FW = 25 N as the weight
of the hanging body.



Fig. 4-1

4.2 [II]    A rope extends between two poles. A 90-N boy hangs from it as
shown in Fig. 4-2(a). Find the tensions in the two parts of the
rope.

Label the two tensions FT1 and FT2, and isolate the piece of rope at
the boy’s hands as the point object. That’s the place where the
three forces of interest act. And doing the analysis at that location
will therefore allow FT1, FT2, and FW, the boy’s weight, to enter
the equations. The free-body diagram for the object is found in
Fig. 4-2(b).

After resolving the forces into their components as shown, write
the first condition for equilibrium:

Evaluating the sines and cosines, these equations become

Solving the first for FT2 gives FT2 = 0.990FT1. Substituting this in
the second equation yields

from which FT1 = 0.35 kN. Then, because FT2 = 0.990FT1, it
follows that FT2 = 0.34 kN.



Fig. 4-2

4.3 [II]    A 50-N box is slid straight across the floor at constant speed by a
force of 25 N, as depicted in Fig. 4-3(a). How large a friction
force impedes the motion of the box? (b) How large is the normal
force? (c) Find μk between the box and the floor.

The forces acting on the box are shown in Fig. 4-3(a). The friction
force is Ff, and the normal force, the supporting force exerted by
the floor, is FN. The free-body diagram and components are drawn
in Fig. 4-3(b). Because the box is moving with constant velocity, it
is in equilibrium. The first condition for equilibrium, taking to the
right as positive,

Fig. 4-3

(a) We can solve for the friction force Ff at once to find that Ff =
19.2 N, or to two significant figures, Ff = 19 N.

(b) To find FN, use the fact that

Solving gives the normal force as FN = 33.9 N or, to two
significant figures, FN = 34 N.



(c) From the definition of μk,

4.4 [II]    Find the tensions in the ropes illustrated in Fig. 4-4(a) if the
supported body weighs 600 N.

Select as our first point object the knot at A because we know one
force acting on it. The weight of the hanging body pulls down on
A with a force of 600 N, and so the free-body diagram for the knot
is as shown in Fig. 4-4(b). Notice that the system is symmetrical
and that will make things a lot simpler. Applying the first
condition for equilibrium to point object A,

Fig. 4-4

The first equation yields FT1 = FT2. (We could have inferred this
from the symmetry of the system. Also from symmetry, FT3 =
FT4.) Substitution of FT1 for FT2 in the second equation gives FT1
= 346 N or 0.35 kN and so FT2 = 346 N or 0.35 kN.



Now isolate knot-B as our point object. Its free-body diagram is
shown in Fig. 4-4(c). We have already found that FT2 = 346 N and
so the equilibrium equations are

The last equation yields FT3 = 876 N or 0.88 kN. Substituting this
in the prior equation leads to FT5 = 650 N or 0.65 kN. As stated
previously, from symmetry, FT4 = FT3 = 876 N or 0.88 kN. How
could you have found FT4 without recourse to symmetry? [Hint:
See Fig. 4-4(d).]

4.5 [I]     Each of the objects in Fig. 4-5 is in equilibrium. Find the normal
force FN in each case.

Fig. 4-5

4.6 [I]     For the situations of Problem 4.5, find the coefficient of kinetic
friction if the object is moving with constant speed. Round off
your answers to two significant figures.

We have already found FN for each case in Problem 4.5. To
determine Ff, the sliding-friction force, use . Then
employ the definition of μk.

4.7 [II]    Suppose that in Fig. 4-5(c) the block is at rest. The angle of the



incline is slowly increased. At an angle θ = 42°, the block begins
to slide. What is the coefficient of static friction between the block
and the incline? (The block and surface are not the same as in
Problems 4.5 and 4.6.)

At the instant the block begins to slide, the friction force has its
critical value. Therefore, μs = Ff/FN at that instant. Following the
method of Problems 4.5 and 4.6,

FN = FW cosθ        and        Ff = FW sinθ

Therefore, when sliding just starts,

But θ was found by experiment to be 42°. Therefore, μs = tan 42°
= 0.90.

4.8 [II]    Pulled by the 8.0-N load shown in Fig. 4-6(a), the 20-N block
slides to the right at a constant velocity. Find μk between the block
and the table. Assume the pulley to be both light and frictionless.

Because it is moving at a constant velocity, the 20-N block is in
equilibrium. Since the pulley is frictionless, the tension in the
continuous rope is the same on both sides of the pulley. Thus, FT1
= FT2 = 8.0 N.

Fig. 4-6



Looking at the free-body diagram in Fig. 4-6(b) and recalling that
the block is in equilibrium,

Then, from the definition of μk,

SUPPLEMENTARY PROBLEMS

4.9 [I]      A person stands on a scale, which then reads 600 N. (a) What force
is exerted on the scale by the person? (b) What force is exerted on
the person by the scale? (c) What would happen to the reading as
the person began to jump straight up?

4.10 [I]    Two evenly matched teams of youngsters are having a tug-of-war.
At a given moment each team pulls with a force of 2000 N. What
is the tension in the rope at that instant?

4.11 [I]    A rope is tied to a hook fastened to a brick wall. Someone then
pulls horizontally on the rope with a force of 400 N, keeping the
rope perpendicular to the wall. What is the value of the force on
the hook? What is the tension in the rope?

4.12 [I]    An essentially weightless pulley that is effectively without friction
is attached to a ceiling hook. A very lightweight rope is passed
over the pulley and hangs down on both sides. A 200.0-N load is
then hung from each end of the rope. What is the value of the
tension in the rope? Determine the net downward force on the
hook.

4.13 [I]    An essentially weightless rope is slung over a frictionless
lightweight pulley that is attached to a hook in the ceiling. An



object weighing 500 N is hung from one end, and a student holds
the other end, keeping the system in equilibrium. What force must
she pull with? In what direction? What is the value of the tension
in the rope?

4.14 [I]    An essentially weightless rope is slung over a lightweight
frictionless pulley that is attached to a ceiling. A 20.0-kg mass is
hung from one end of the rope, and a student holds the other end,
keeping the system in equilibrium. What force must she pull with?
In what direction? What is the value of the tension in the rope?
Determine the total downward force on the ceiling.

4.15 [I]    A 2.00-kg block rests on a frictionless air table. Two horizontal
forces act on it; one is 500 N due east, and the other is 1200 N due
south. What third force will keep the block from accelerating?

4.16 [I]    The load in Fig. 4-7 is hanging at rest. Take the ropes to all be
vertical and the pulleys to be weightless and frictionless. (a) How
many segments of rope support the combination of the lower
pulley and load? (b) What is the downward force on the lowest
pulley (the “floating” one)? (c) What must be the total upward
force exerted on the floating pulley by the two lengths of rope? (d)
What is the upward force exerted on the floating pulley by each
length of rope supporting it? (e) What is the tension in the rope
wound around the two pulleys? (f) How much force is the man
exerting? (g) What is the net downward force acting on the
uppermost pulley? (h) How much force acts downward on the
hook in the ceiling?

4.17 [I]    (a) A 600-N load hangs motionlessly in Fig. 4-8. Assume the ropes
to all be vertical and the pulleys to be weightless and frictionless.
(a) What is the tension in the bottom hook attached, via a ring, to
the load? (b) How many lengths of rope support the movable
pulley? (c) What is the tension in the long rope? (d) How much
force does the man apply? (e) How much force acts downward on
the ceiling?

4.18 [I]    For the situation shown in Fig. 4-9, find the values of FT1 and FT2



if the hanging object’s weight is 600 N.

Fig. 4-7



Fig. 4-8

Fig. 4-9

4.19 [I]    The following coplanar forces pull on a ring: 200 N at 30.0°, 500 N
at 80.0°, 300 N at 240°, and an unknown force. Find the
magnitude and direction of the unknown force if the ring is in



equilibrium.

4.20 [II]  In Fig. 4-10, the pulleys are frictionless and weightless and the
system hangs in equilibrium. If FW3, the weight of the hanging
object on the right, is 200 N, what are the values of FW1 and FW2?

4.21 [II]  Suppose FW1 in Fig. 4-10 is 500 N. Find the values of FW2 and FW3
if the system is to hang in equilibrium as shown.

4.22 [I]    If in Fig. 4-11 the friction between the block and the incline is
negligible, how much must the object on the right weigh if the
200-N block is to remain at rest?

Fig. 4-10

Fig. 4-11

4.23 [II]  The system in Fig. 4-11 remains at rest when FW = 220 N. What are
the magnitude and direction of the friction force on the 200-N
block?



4.24 [II]  Find the normal force acting on the block in each of the equilibrium
situations shown in Fig. 4-12.

4.25 [II]  The block depicted Fig. 4-12(a) slides with constant speed under
the action of the force shown. (a) How large is the retarding
friction force? (b) What is the coefficient of kinetic friction
between the block and the floor?

Fig. 4-12

4.26 [II]  The block shown in Fig. 4-12(b) slides at a constant speed down the
incline. (a) How large is the friction force that opposes its motion?
(b) What is the coefficient of sliding (kinetic) friction between the
block and the plane?

4.27 [II]  The block in Fig. 4-12(c) just begins to slide up the incline when
the pushing force shown is increased to 70 N. (a) What is the
maximum static friction force on it? (b) What is the value of the
coefficient of static friction

4.28 [II]  If FW = 40 N in the equilibrium situation shown in Fig. 4-13, find
FT1 and FT2.

4.29 [III]  Refer to the equilibrium situation shown in Fig. 4-13. The cords
are strong enough to withstand a maximum tension of 80 N. What
is the largest value of FW that they can support as shown?

4.30 [III] The hanging object in Fig. 4-14 is in equilibrium and has a weight
FW = 80 N. Find FT1, FT2, FT3, and FT4. Give all answers to two
significant figures.

4.31 [III] The pulleys shown in Fig. 4-15 have negligible weight and



friction. The long rope has one section that is at 40°; assume its
other segments are vertical. What is the value of FW if the system
is at equilibrium?

Fig. 4-13

Fig. 4-14



Fig. 4-15

4.32 [III] In Fig. 4-16, the system is at rest. (a) What is the maximum value
that FW can have if the friction force on the 40-N block cannot
exceed 12.0 N? (b) What is the coefficient of static friction
between the block and the tabletop?

4.33 [III] The block in Fig. 4-16 is just on the verge of slipping. If FW = 8.0
N, what is the coefficient of static friction between the block and
tabletop?

Fig. 4-16



ANSWERS TO SUPPLEMENTARY PROBLEMS

4.9 [I]     (a) 600 N, down; (b) 600 N, up; (c) the reading would increase.

4.10 [I]    2000 N

4.11 [I]    400 N, away from the wall; 400 N

4.12 [I]    200 N; 400 N

4.13 [I]    500 N; down; 500 N

4.14 [I]    196 N; down; 196 N; 392 N

4.15 [I]    1300 N north of west at an angle of 67.4°

4.16 [I]    (a) 2; (b) 200 N; (c) 200 N; (d) 100 N; (e) 100 N; (f) 100 N; (g) 300
N; (h) 300 N

4.17 [I]    (a) 600 N; (b) 3; (c) 200 N; (d) 200 N; (e) 800 N

4.18 [I]    503 N, 783 N

4.19 [I]    350 N at 252°

4.20 [II]  260 N, 150 N

4.21 [II]  288 N, 384 N

4.22 [I]    115 N

4.23 [II]  105 N down the incline

4.24 [II]  (a) 34 N; (b) 46 N; (c) 91 N

4.25 [II]  (a) 12 N; (b) 0.34

4.26 [II]  (a) 39 N; (b) 0.84



4.27 [II]  (a) 15 N; (b) 0.17

4.28 [II]  58 N, 31 N

4.29 [III] 55 N

4.30 [III] 37 N, 88 N, 77 N, 0.14 kN

4.31 [III] 185 N

4.32 [III] (a) 6.9 N; (b) 0.30

4.33 [III] 0.35



Equilibrium of a Rigid Body Under
Coplanar Forces

The Torque (τ) about an axis, due to a force, is a measure of the
effectiveness of the force in producing rotation about that axis. The word
comes from the French for “twist.” It is defined in the following way:

where r is the radial distance from the axis of rotation to the point of
application of the force, and θ is the acute angle between the lines-of-action
of and  and , as shown in Fig. 5-1(a). Often this definition is written in
terms of the lever arm of the force, which is the perpendicular distance from
the axis of rotation to the line-ofaction of the force, as shown in Fig. 5-1(b).
Because the lever arm is simply r sinθ, the torque becomes

The units of torque are newton-meters (N⋅m). Plus and minus signs will be
assigned to torques; for example, a torque that tends to cause
counterclockwise rotation about the axis might be positive, whereas one
causing clockwise rotation would then be negative. This will allow us to
sum the influences of several torques acting simultaneously.



Fig. 5-1

The Two Conditions for Equilibrium of a rigid object under the action of
coplanar forces are

(1) The first or force condition: The vector sum of all forces acting on the
body must be zero:

where the plane of the coplanar forces is taken to be the xy-plane.
(2) The second or torque condition: Take any axis perpendicular to the

plane of the coplanar forces. Call the torques that tend to cause
clockwise rotation about that axis negative, and counterclockwise
torques positive; then the sum of all the torques acting on the object
must be zero:

The Center-of-Gravity (c.g.) of an object is the point at which the entire
weight of the object may be considered concentrated—that is, the line-of-
action of the weight passes through the center-of-gravity. A single vertical
upwardly directed force, equal in magnitude to the weight of the object,
applied through its center-of-gravity, will keep the object in equilibrium.

The Position of the Axis Is Arbitrary: If the sum of the torques is zero
about one axis for a body that obeys the force condition, it is zero about all
other axes parallel to the first. To make the math a little simpler, we can
often choose the axis in such a way that the line-of-action of an unknown



force passes through the intersection of the axis and the plane of the forces.
The angle θ between  and  is then zero; hence, that particular unknown
force exerts zero torque and therefore does not appear in the torque
equation.

PROBLEM SOLVING GUIDE

Start the analysis of each problem by carefully reading it, several times if
necessary. Once you know what was given and what you must find, write
those quantities down with their appropriate symbols. The most important
equations in this chapter are (5.3) and (5.4). Two equations will allow you to
solve for two unknowns. Again—try doing the [I]-level worked-out
problems first. Cover the solutions and look at them only after you’re
finished or you get stuck. Wait a day or two and then go back to any
problem you could not do and try again, and again if need be, until you
really master it.

SOLVED PROBLEMS

5.1 [I]      Imagine a bar of steel 80 cm long pivoted horizontally at its left
end, as depicted in Fig. 5-2. Find the torque about axis-A (which is
perpendicular to the page) due to each of the forces shown acting
at its right end.

Fig. 5-2

We use τ = rF sinθ, taking clockwise torques to be negative while
counterclockwise torques are positive. The individual torques due
to the three forces are



The line of the 20-N force goes through the axis, and so θ = 0° for
it. Or, put another way, because the line of the force passes
through the axis, its lever arm is zero. Either way, the torque is
zero for this (and any) force whose line-of-action passes through
the axis. If you had trouble seeing which way the torques act,
redraw the diagram on a piece of paper and imagine a pin stuck
downward at A. Then put your finger at the right end of the rod
and push the paper in the direction of the 10-N force. The paper
will rotate clockwise around the pin. That’s the angular direction
of the torque due to that force.

5.2 [II]    A uniform metal beam of length L weighs 200 N and holds a 450-N
object as shown in Fig. 5-3. Find the magnitudes of the forces
exerted on the beam by the two supports at its ends. Assume the
lengths are exact.

Rather than draw a separate free-body diagram, we show the
forces on the object being considered (the beam) in Fig. 5-3.
Because the beam is uniform, its center of gravity is at its
geometric center. Thus, the weight of the beam (200 N) is shown
acting downward at the beam’s center. The forces F1 and F2 are
exerted on the beam by the supports. Because there are no x-
directed forces acting on the beam, we have only two equations to
write for this equilibrium situation: ΣFy = 0 and Στ = 0.



Fig. 5-3

Before the torque equation is written, an axis must be chosen. We
choose it at A, so that the unknown force F1 will pass through it
and exert no torque. The torque equation is then

Dividing through the equation by L and solving for F2, we find
that F2 = 438 N.

To determine F1, substitute the value of F2 in the force equation,
thereby obtaining F1 = 212 N.

5.3 [II]    A uniform, horizontal, 100-N pipe is used as a lever, as shown in
Fig. 5-4. Where must the fulcrum (the support point) be placed if a
500-N weight at one end is to balance a 200-N weight at the other
end? What is the upward reaction force exerted by the support on
the pipe?

The forces in question are shown in Fig. 5-4, where FR is the
reaction force of the support on the pipe. The weight of the pipe
acts downward at its center. We assume that the support point is at
a distance x from one end. Take the axis of rotation to be at the
support point. Then the torque equation, , about that
point becomes

+(x)(200 N)(sin 90°) + (x − L/2)(100 N)(sin 90°) − (L − x)(500 N)(sin 90°) =
0

This simplifies to

(800 N)(x) = (550 N)(L)

and so x = 0.69L. The support should be placed 0.69 of the way
from the lighter-loaded end. To find FR use ,



FR − 200 N − 100 N − 500 N = 0

from which FR = 800 N.

Fig. 5-4

5.4 [II]    Where must a 0.80-kN object be hung on a uniform, horizontal,
rigid 100-N pole so that a girl pushing up at one end supports one-
third as much as a woman pushing up at the other end?

The situation is shown in Fig. 5-5, where the weight of the pole
acts down at its center. We represent the force exerted by the girl
as F, and that by the woman as 3F. There are two unknowns, F
and x, and we will need two equations. To avoid the possibility of
writing equations that turn out not to be independent, it’s a good
practice to write one sum-of-the-torques equation and one sum-of-
the-forces equation. Take the rotational axis point at the left end.
Then the torque equation becomes

−(x)(800 N)(sin 90°) − (L/2)(100 N)(sin 90°) + (L)(F)(sin 90°) = 0

For the second equation write

+↑ΣFy = 3F − 800 N − 100 N + F = 0

from which F = 225 N. Substitution of this value in the torque
equation yields

(800 N)(x) = (225 N)(L) − (100 N)(L/2)

and so x = 0.22L. The load should be hung 0.22 of the way from



the woman to the girl.

Fig. 5-5

Fig. 5-6

5.5 [II]    A uniform, horizontal, 0.20-kN board of length L has two objects
hanging from it with weights of 300 N at exactly L/3 from one end
and 400 N at exactly 3L/4 from the same end. What single
additional force acting on the board will cause the board to be in
equilibrium?

The situation is drawn in Fig. 5-6, where F is the force we wish to
find. For equilibrium, ΣFy = 0 and so

F = 400 N + 200 N + 300 N = 900 N



Because the board is to be in equilibrium, we are free to locate the
axis of rotation anywhere. Choose it at point-A at the left end of
the board, since all the forces are measured (as to location) from
that end in the diagram. Then Στ = 0, and taking counterclockwise
as positive,

+(x)(F)(sin 90°) − (3L/4)(400 N)(sin 90°) − (L/2)(200 N)(sin 90°) − (L/3)
(300 N)(sin 90°) = 0

Using F = 900 N, we find that x = 0.56L. The required force is
0.90 kN upward at 0.56L from the left end.

5.6 [III]  The right-angle rule (or square) depicted in Fig. 5-7 hangs at rest
from a peg as shown. It is made of a uniform metal sheet. One arm
is L cm long, while the other is 2L cm long. Find (to two
significant figures) the angle θ at which it will hang.

Fig. 5-7

If the rule is not too wide, we can approximate it as two thin rods
of lengths L and 2L joined perpendicularly at A. Let γ be the
weight of each centimeter of rule. The forces acting are indicated
in Fig. 5-7, where FR is the upward reaction force of the peg.



Write the torque equation using point-A as the axis of rotation.
Because τ = rF sinθ and because the torque about A due to FR is
zero, the torque equation becomes

where the moment arm of the counterclockwise torque (due to γL)
is (L/2) sin (90° − θ) and that of the clockwise torque (due to 2γL)
is L sinθ. Recall that sin (90° − θ) = cosθ. After making this
substitution and dividing by 2γL2 cosθ,

which yields θ = 14°.

5.7 [II]    Consider the situation illustrated in Fig. 5-8(a). The uniform 0.60-
kN beam is hinged at P. Find the tension in the tie rope and the
components of the reaction force exerted by the hinge on the
beam. Give your answers to two significant figures.

Fig. 5-8

The reaction forces acting on the beam are shown in Fig. 5-8(b),
where the force exerted by the hinge is represented by its
horizontal and vertical components, FRH and FRV. The torque
equation about P is

(We take the axis at P because then FRH and FRV do not appear in
the torque equation.) Solving this equation yields FT = 2280 N or,



to two significant figures, FT = 2.3 kN.

To find FRH and FRV, write

Since we know FT, these equations lead to FRH = 1750 N or 1.8
kN and FRV = 65.6 N or 66 N.

5.8 [II]    A uniform, 0.40-kN boom is supported as shown in Fig. 5-9(a).
Find the tension in the tie rope and the force exerted on the boom
by the pin at P.

The forces acting on the boom are shown in Fig. 5-9(b). Take the
pin as the axis of rotation. The torque equation is then

Fig. 5-9

from which it follows that FT = 2460 N or 2.5 kN. Now write

and so FRH = 2.5 kN. Also,

and so FRV = 2.4 kN. FRV and FRH are the components of the
reaction force at the pin. The magnitude of this force is



The tangent of the angle it makes with the horizontal is tanθ =
2400/2460, and so θ = 44°.

5.9 [II]    As indicated in Fig. 5-10, hinges A and B hold a uniform, 400-N
door in place. If the upper hinge happens to support the entire
weight of the door, find the forces exerted on the door at both
hinges. The width of the door is exactly h/2, where h is the
distance between the hinges.

Fig. 5-10

The forces acting on the door are shown in Fig. 5-10. Only a
horizontal force acts at B, because the upper hinge is assumed to
support the door’s weight. Take torques about point-A as the axis
of rotation:

from which F = 100 N. We also have



We find from these that FRH = 100 N and FRV = 400 N.

For the resultant reaction force FR on the hinge at A, we have

The tangent of the angle that  makes with the negative x-
direction is FRV/FRH, and so the angle is arctan 4.00 = 76.0°.

5.10 [II]  A ladder leans against a smooth wall, as can be seen in Fig. 5-11.
(By a “smooth” wall, we mean that the wall exerts on the ladder
only a force that is perpendicular to the wall. There is no friction
force.) The ladder weighs 200 N, and its center of gravity is 0.40L
from the base, where L is the ladder’s length. (a) How large a
friction force must exist at the base of the ladder if it is not to slip?
(b) What is the necessary coefficient of static friction?

Fig. 5-11

(a) We wish to find the friction force Ff. Notice that no friction force
exists at the top of the ladder. Taking torques about point-A gives the
torque equation



Solving leads to FN2 = 67.1 N. We can also write

and so Ff = 67 N and FN1 = 0.20 kN.

(b) 

5.11 [III] For the situation drawn in Fig. 5-12(a), find FT1, FT2, and FT3. The
boom is uniform and weighs 800 N.

First apply the force condition to point-A. The appropriate free-
body diagram is shown in Fig. 5-12(b). We then have

From the first of these we find FT2 = 3.11 kN; then the second
equation gives FT1 = 2.38 kN.

Let us now isolate the boom and apply the equilibrium conditions
to it. The appropriate free-body diagram is found in Fig. 5-12(c).
The torque equation, for torques taken about point-C, is

Solving for FT3, we compute it to be 9.84 kN. If it were required,
we could find FRH and FRV by using the x- and y-force equations.

Fig. 5-12



SUPPLEMENTARY PROBLEMS

5.12 [I]    A steering wheel has a diameter of 40.0 cm. A force of 30.0 N is
applied to its rim on the right, tangent to the wheel and in the
plane of it. Determine the size of the resulting torque. [Hint: The
moment arm is the radius. Watch out for units.]

5.13 [I]    A wrench is 50.0 cm long. It is placed on a nut, and a force of 100
N is applied perpendicular to the wrench handle. This force is in
the plane of the wrench and nut, at a distance of 30.0 cm from the
center of the nut. Determine the size of the torque twisting the nut.
[Hint: Draw a diagram and label the moment arm. Watch out for
units.]

5.14 [I]    A horizontal essentially weightless lever is pivoted so it can rotate
freely in a vertical plane. A downward force of 30.0 N is applied
perpendicularly to the lever at a point 25.0 cm from and to the
right of the pivot. Determine the torque on the lever, about the
pivot. [Hint: Draw a diagram and specify the direction of the
torque.]

5.15 [I]    A horizontal essentially weightless lever is pivoted at its center so
it can rotate freely in a vertical plane. A downward force of 80.0 N
is applied perpendicularly to the lever at a point 35.0 cm from and
to the right of the pivot. Another downward force of 100.0 N is
applied perpendicularly to the lever at a point 15.0 cm from and to
the left of the pivot. Determine the net torque on the lever. [Hint:
Draw a diagram.]

5.16 [I]    A seesaw is 5.00 m long with a fulcrum at its center. The uniform
plank is balanced horizontally when a 40.0-kg kid sits at the very
end on the right and an 80.0-kg kid sits somewhere on the left.
Locate that second kid. [Hint: Draw a diagram.]

5.17 [I]    A force of 1000 N is applied downward at the right end of a 1.50-m
long, essentially weightless horizontal crowbar. The bar is pivoted
on a rock 1.25 m from the right end. What is the maximum



amount of weight that can be supported on the left end before the
bar moves? [Hint: Draw a diagram. Watch out for significant
figures.]

5.18 [I]    An essentially weightless shovel is 120 cm long. Someone holds it
horizontally, supporting it with his left hand at the shovel’s center
of gravity and his right hand 80.0 cm to the right of the c.g. The
shovel contains a 20.0-N rock whose c.g. is 8.00 cm to the right of
the edge of the shovel. How much force does the person exert
down on the handle? [Hint: Draw a diagram and take the torques
around the left hand to avoid the force of the left hand.]

5.19 [I]    An 800-N painter stands on a uniform horizontal 100-N plank
resting on the rungs of two separated stepladders. The plank is
4.00 m long, and it is supported at its very ends (not a very safe
arrangement). The painter stands on the plank 1.00 m from its
right end. Determine the upward force exerted by the ladder on the
left. [Hint: Draw a diagram and locate the weight of the plank at
its c.g. and take the torques around the right end.]

5.20 [II]  As depicted in Fig. 5-13, two people sit in a car that weighs 8000
N. The person in front weighs 700 N, while the one in the back
weighs 900 N. Call L the distance between the front and back
wheels. The car’s center of gravity is a distance 0.400L behind the
front wheels. How much force does each front wheel and each
back wheel support if the people are seated along the centerline of
the car?



Fig. 5-13

5.21 [I]    Two people, one at each end of a uniform beam that weighs 400 N,
hold the beam at an angle of 25.0° to the horizontal. How large a
vertical force must each person exert on the beam?

5.22 [II]  Repeat Problem 5.13 if a 140-N child sits on the beam at a point
one-fourth of the way along the beam from its lower end.

5.23 [II]  Shown in Fig. 5-14 is a uniform 1600-N beam hinged at one end
and held by a horizontal tie rope at the other. Determine the
tension FT in the rope and the force components at the hinge.

Fig. 5-14

5.24 [II]  The uniform horizontal beam illustrated in Fig. 5-15 weighs 500 N
and supports a 700-N load. Find the tension in the tie rope and the
reaction force of the hinge on the beam.



Fig. 5-15

Fig. 5-16

5.25 [II]  The arm drawn in Fig. 5-16 supports a 4.0-kg sphere. The mass of
the hand and forearm together is 3.0 kg and its weight acts at a
point 15 cm from the elbow. Assuming all the forces are vertical,
determine the force exerted by the biceps muscle.

5.26 [II]  The mobile depicted in Fig. 5-17 hangs in equilibrium. It consists
of objects held by vertical strings. Object-3 weighs 1.40 N, while
each of the identical uniform horizontal bars weighs 0.50 N. Find
(a) the weights of objects-1 and -2, and (b) the tension in the upper
string.



Fig. 5-17

5.27 [II]  The hinges of a uniform door which weighs 200 N are 2.5 m apart.
One hinge is a distance d from the top of the door, while the other
is a distance d from the bottom. The door is 1.0 m wide. The
weight of the door is supported by the lower hinge. Determine the
forces exerted by the hinges on the door.

5.28 [III] The uniform bar in Fig. 5-18 weighs 40 N and is subjected to the
forces shown. Find the magnitude, location, and direction of the
force needed to keep the bar in equilibrium.

Fig. 5-18

5.29 [III] The horizontal, uniform, 120-N board drawn in Fig. 5-19 is
supported by two ropes as shown. A 0.40-kN weight is suspended
one-quarter of the way from the left end. Find FT1, FT2, and the



angle θ made by the rope on the left.

Fig. 5-19

Fig. 5-20

5.30 [III] The foot of a ladder rests against a wall, and its top is held by a
horizontal tie rope, as indicated in Fig. 5-20. The ladder weighs
100 N, and its center of gravity is 0.40 of its length from the foot.
A 150-N child hangs from a rung that is 0.20 of the length from
the top. Determine the tension in the tie rope and the components
of the force on the foot of the ladder.

5.31 [III] A truss is made by hinging two uniform, 150-N rafters as depicted
in Fig. 5-21. They rest on an essentially frictionless floor and are
held together by a horizontal tie rope. A 500-N load is held at their
apex. Find the tension in the tie rope.



Fig. 5-21

5.32 [III] A 900-N lawn roller is to be pulled over a 5.0-cm high curb (see
Fig. 5-22). The radius of the roller is 25 cm. What minimum
pulling force is needed if the angle θ made by the handle is (a) 0°
and (b) 30°? [Hint: Find the force needed to keep the roller
balanced against the edge of the curb, just clear of the ground.]

Fig. 5-22



Fig. 5-23

5.33 [II]  In Fig. 5-23, the uniform horizontal beam weighs 500 N. If the tie
rope can support 1800 N, what is the maximum value the load FW
can have?

5.34 [III] The beam in Fig. 5-24 has negligible weight. If the system hangs in
equilibrium when FW1 = 500 N, what is the value of FW2?

Fig. 5-24

5.35 [III] Repeat Problem 5.26, but now find FW1 if FW2 is 500 N. Here the
beam weighs 300 N and is uniform.

5.36 [III] An object is subjected to the forces shown in Fig. 5-25. What
single force F applied at a point on the x-axis will balance these
forces leaving the object motionless? (First find its components,
and then find the force.) Where on the x-axis should the force be



applied? Notice that before F is applied there is an unbalanced
force with components to the left and upward.

Fig. 5-25

5.37 [III] The solid uniform disk of radius b illustrated in Fig. 5-26 can turn
freely on an axle through its center. A hole of diameter D is drilled
through the disk; its center is a distance r from the axle. The
weight of the material drilled out is FWh. (a) Find the weight FW of
an object hung from a string wound on the disk that will hold the
disk in equilibrium in the position shown. (b) What would happen
if the load FW vanished? Explain your answer.

Fig. 5-26



ANSWERS TO SUPPLEMENTARY PROBLEMS

5.12 [I]    6.00 N⋅m

5.13 [I]    30.0 N⋅m

5.14 [I]    7.50 N⋅m, clockwise

5.15 [I]    13.0 N⋅m, clockwise

5.16 [I]    1.25 m to the left of the fulcrum

5.17 [I]    5.00 kN

5.18 [I]    8.00 N

5.19 [I]    275 N

5.20 [II]  2.09 kN, 2.71 kN

5.21 [I]    200 N

5.22 [II]  235 N, 305 N

5.23 [II]  FT = 0.67 kN, FRH = 0.67 kN, FRV = 1.6 kN

5.24 [II]  2.9 kN, 2.0 kN at 35° below the horizontal

5.25 [II]  0.43 kN

5.26 [II]  (a) 1.5 N, 1.4 N; (b) 5.3 N

5.27 [II]  The horizontal force at the upper hinge is 40 N. The force at the
lower hinge is 0.20 kN at 79° above the horizontal.

5.28 [III] 0.11 kN, 0.68L from right end, at 49°

5.29 [III] 0.19 kN, 0.37 kN, 14°



5.30 [III] FT = 0.12 kN, FRH = 0.12 kN, FRV = 0.25 kN

5.31 [III] 0.28 kN

5.32 [III] (a) 0.68 kN; (b) 0.55 kN

5.33 [II]  0.93 kN

5.34 [III] 0.64 kN

5.35 [III] 0.56 kN

5.36 [III] Fx = 232 N, Fy = −338 N; F = 410 N at −55.5°; at x = 2.14 m

5.37 [III] (a) FW = FWh (r/b) cosθ; (b) Imagine the disk divided into four
quadrants, and notice that the second quadrant is heavier than the
first. Without FW, there would be an unbalanced torque about the
axle and the disk would rotate counterclockwise until the hole was
at the top and θ = 90°. In that configuration the torque would
disappear.



Work, Energy, and Power

The Work (W) done by a force is expressed as the product of that force
times the parallel distance over which it acts. Consider the simple case of
straight-line motion shown in Fig. 6-1, where a force  acts on a body that
simultaneously undergoes a vector displacement . The component of  in
the direction of  is F cosθ. The work W done by the force  is defined to be
the component of  in the direction of the displacement, multiplied by the
displacement:

W =(F cosθ)(s)= Fs cosθ

Notice that θ is the angle between the force and displacement vectors. Work
is a scalar quantity.

If  and  are in the same direction, cosθ = cos 0° = 1 and W = Fs. But if 
and  are in opposite directions, then cosθ = cos 180° = −1 and W = −Fs; the
work is negative.

To be completely rigorous while analyzing motion along curved paths, if
work is to be formulated in terms of displacements, we should write the
above equation using differentials and then integrate over the arbitrary path
taken. We can use the simple expression given above, provided we limit
things to straight-line motion, whereupon the path traveled equals the
magnitude of the displacement vector.

Forces such as friction often slow the motion of an object and are then
opposite in direction to the displacement. Such forces usually do negative
work. Inasmuch as the friction force opposes the motion of an object, the
work done in overcoming friction (along any path, curved or straight) equals
the product of Ff and the path length traveled. Thus, if an object is dragged
against friction, back to the point where the journey started, work is done



even if the net displacement is zero.
Work is the transfer of energy from one entity to another by way of the

action of a force applied over a distance. The point of application of the
force must move if work is to be done.

The Unit of Work in the SI is the newton-meter, called the joule (J). One
joule is the work done by a force of 1 N when it displaces an object 1 m in
the direction of the force. Other units sometimes used for work are the erg,
where 1 erg = 10-7 J, and the foot-pound (ft · lb), where 1 ft · lb = 1.355 J.

Energy (E) is a measure of the change imparted to or by a system through
the action of forces. It can be mechanically transferred to an object when a
force does work on that object. The amount of energy given to an object via
the action of a force over a distance equals the work done. When an object
does work, it gives up an amount of energy equal to the work it does.
Because change can be effectuated in many different ways, there are a
variety of forms of energy. All forms of energy (including work), have the
same units, joules. Energy is a scalar quantity. An object that is capable of
doing work possesses energy.

Kinetic Energy (KE) is the energy possessed by an object because it is in
motion. If an object of mass m is moving with a speed υ, it has translational
KE given by

When m is in kg and υ is in m/s, the units of KE are joules. This equation for
KE is accurate enough for all our needs, but it will have to be modified for
objects that move at very high (relativistic) speeds.

Gravitational Potential Energy (PEG) is the energy possessed by an object
because of the gravitational interaction. In falling through a vertical distance
h, a mass m can do work in the amount mgh. We define the PEG of an object
relative to an arbitrary zero level, often the Earth’s surface. If the object is at
a height h above the zero (or reference) level,

where g is the acceleration due to gravity. Notice that mg is the weight of



the object. The units of PEG are joules when m is in kg, g is in m/s2, and h is
in m. This expression assumes that the mass (m) is close to the Earth’s
surface where g is approximately constant.

The Work-Energy Theorem: When work is done on a point mass or a
rigid body, and there is no change in PE, the energy imparted can only
appear as KE. Insofar as a body is not totally rigid, however, energy can be
transferred to its parts and the work done on it will not precisely equal its
change in KE.

Forces That Propel But Do No Work: An applied force can propel a non-
rigid body and do little or no work on it because the point of application of
the force does not move appreciably. For example, when a person jumps
straight up off a floor, the normal force essentially does no work on the
person, although it accelerates the person upward. Accordingly, one must be
careful when considering the mechanics of self-propelled bodies like cars,
people, and airplanes.

Conservation of Energy: Energy can neither be created nor destroyed but
only transformed from one kind to another. That old saying is only true if
we regard mass as a form of energy. Ordinarily, the conversion of mass into
energy, and vice versa, predicted by the Special Theory of Relativity can be
ignored. (This subject is treated in Chapter 41; refer to Chapter 7 for
additional applications of energy conservation.)

For a system that is isolated in the sense that it neither gains nor loses
energy, its initial energy Ei must equal its final energy Ef.

Power (P) is the time rate of doing work:

where the speed is measured in the direction of the force applied to the
object. In the SI, the unit of power is the watt (W), and 1 W = 1 J/s.

Another unit of power often used is horsepower: 1 hp = 746 W.
Generally speaking, power is the rate at which energy is transferred.

The Kilowatt-Hour is a unit of energy. If a force is doing work at a rate of
1 kilowatt (which is 1000 J/s), then in 1 hour it will do 1 kW⋅h of work:



1 kW⋅h = 3.6 × 106 J = 3.6 MJ

PROBLEM SOLVING GUIDE

The central idea in this chapter is conservation of mechanical energy: Ei =
Ef. When friction losses occur, they must be included as part of Ef. Thus if
an amount of work was done to overcome friction, that much energy would
not be available as KE or PE in the final state of the system (see Problem
6.15, especially the alternative method).

SOLVED PROBLEMS

6.1 [I]      In Fig. 6-1, assume that the object is being pulled in a straight line
along the ground by a 75-N force directed 28° above the
horizontal. How much work does the force do in pulling the object
8.0 m horizontally?

The work done is equal to the product of the displacement, 8.0 m,
and the component of the force that is parallel to the displacement,
(75 N)(cos 28°). Thus,

W = (75 N)(cos 28°)(8.0 m) = 0.53 kJ

Fig. 6-1

6.2 [I]      A block moves up a 30° incline under the action of applied forces,
three of which are shown in Fig. 6-2.  is horizontal and of



magnitude 40 N.  is normal to the plane and of magnitude 20 N. 
is parallel to the plane and of magnitude 30 N. Determine the work
done by each force as the block (and point of application of each
force) moves 80 cm up the incline.

Fig. 6-2

The component of  along the direction of the displacement is

F1 cos30° = (40 N)(0.866) = 34.6 N

Hence, the work done by  is (34.6 N)(0.80 m) = 28 J. (Notice that
the distance must be expressed in meters.)

Because it has no component in the direction of the displacement, 
 does no work.

The component of  in the direction of the displacement is 30 N.
Hence, the work done by  is (30 N) × (0.80 m) = 24 J.

6.3 [II]     A moving 300-g object slides unpushed 80 cm in a straight line
along a horizontal tabletop. How much work is done in
overcoming friction between the object and the table if the
coefficient of kinetic friction is 0.20?

First find the friction force. Since the normal force equals the
weight of the object,

Ff = μkFN = (0.20)(0.300 kg)(9.81 m/s2) = 0.588 N



The work done overcoming friction is Ffs cosθ. Here θ is the angle
between the force and the displacement. Because the friction force
is opposite in direction to the displacement, θ = 180°. Therefore,

Work = Ffs cos180° = (0.588 N)(0.80 m)(−1) = −0.47 J

The work is negative because the friction force is oppositely
directed to the displacement; it slows the object and it decreases
the object’s kinetic energy, or more to the point, it opposes the
motion.

6.4 [I]      How much work is done against gravity in lifting a 3.0-kg object
through a vertical distance of 40 cm?

An external force is needed to lift an object. If the object is raised
at constant speed, the lifting force must equal the weight of the
object. The work done by the lifting force is referred to as work
done against gravity. Because the lifting force is mg, where m is
the mass of the object,

Work = (mg)(h)(cosθ) = (3.0 kg × 9.81 N)(0.40 m)(1) = 12 J

In general, the work done against gravity in lifting an object of
mass m through a vertical distance h is mgh.

6.5 [I]      How much work is done on an object by the force that supports it
as the object is lowered at a constant speed through a vertical
distance h? How much work does the gravitational force on the
object do in this same process?

The supporting force is mg, where m is the mass of the object. It is
directed upward while the displacement is downward. Hence, the
work it does is negative:

Fscosθ = (mg)(h)(cos 180°) = −mgh

The force of gravity acting on the object is also mg, but it is
directed downward in the same direction as the displacement. The



work done on the object by the force of gravity is therefore
positive:

Fscosθ = (mg)(h)(cos 0°) = mgh

6.6 [II]     A narrowing ladder 3.0 m long weighing 200 N has its center of
gravity 120 cm from the bottom. At its top end is a 50-N can of
paint. Compute the work required to raise the ladder from being
horizontal, lying on the ground, to being vertical with its legs
resting on the ground. In other words, how much work must be
done to rotate the ladder into an upright vertical position, thereby
raising both its center of gravity and the can of paint?

The work done (against gravity) consists of two parts: the work to
raise the center of gravity 1.20 m and the work to raise the load at
the end through 3.0 m. Therefore,

Work done = (200 N)(1.20 m) + (50 N)(3.0 m) = 0.39 kJ

6.7 [II]     Compute the work done against gravity by a pump that discharges
600 liters of fuel oil into a tank 20 m above the pump’s intake.
One cubic centimeter of fuel oil has a mass of 0.82 g. One liter is
1000 cm3.

The mass lifted is

The lifting work is then

Work = (mg)(h) = (492 kg × 9.81 m/s2)(20 m) = 96 kJ

6.8 [I]      A 2.0-kg mass falls 400 cm. (a) How much work was done on it by
the gravitational force? (b) How much PEG did it lose? (c) Given
that work is the transfer of energy, where does that energy end up?

(a) Gravity pulls with a force mg on the object, and the displacement



is 4 m in the direction of the force. The positive work done by gravity
is therefore

(mg)(4.00 m) = (2.0 kg × 9.81 N)(4.00 m) = 78 J

(b) The change in PEG of the object is mghf − mghi, where hi and hf
are the initial and final heights of the object above the reference level.
We then have

Change in PEG = mghf − mghi = mg(hf − hi) − (2.0 kg × 9.81
N)(−4.0 m) = −78 J

The loss in PEG is 78 J.

(c) Gravity provides the force that accelerates the 2.0-kg mass and
increases its kinetic energy by 78 J.

6.9 [II]     A force of 1.50 N acts on a 0.20-kg cart so as to uniformly
accelerate it along a straight air track. The track and force are
horizontal and in line. How fast is the cart going after acceleration
from rest through 30 cm, if friction is negligible?

The work done by the force causes, and is equal to, the increase in
KE of the cart. Therefore,

Substituting gives

from which υf = 2.1 m/s.

6.10 [II]   A 0.50-kg block slides across a tabletop with an initial velocity of
20 cm/s and comes to rest in a distance of 70 cm. Find the average
friction force that retarded its motion.

The KE of the block is decreased because of the slowing action of
the friction force. That is,



Change in KE of block = Work done on block by friction force

Because the friction force on the block is opposite in direction to
the displacement, cosθ = −1. Using υf = 0, υi = 0.20 m/s, and s =
0.70 m, the above equation becomes

from which Ff = 0.014 N.

6.11 [II]   A car going 15 m/s is brought to rest in a distance of 2.0 m as it
strikes a pile of dirt. How large an average force is exerted by
seatbelts on a 90-kg passenger as the car is stopped?

We assume the seatbelts stop the passenger in 2.0 m. The force F
they apply acts through a distance of 2.0 m and decreases the
passenger’s KE to zero. So

Change in KE of passenger = Work done by F

where cosθ = −1 because the restraining force on the passenger is
opposite in direction to the displacement. Solving, we find F = 5.1
kN.

6.12 [II]   A projectile is shot straight upward from the Earth with a speed of
20 m/s. Using energy considerations, how high is the projectile
when its speed is 8.0 m/s? Ignore air friction.

Because the projectile’s energy is conserved,

We wish to find hf − hi. After a little algebra,



Alternative Method

Since energy, E, is conserved

and

6.13 [II]   In an Atwood machine (see Problem 3.30), the two masses are 800
g and 700 g. The system is released from rest. How fast is the 800-
g mass moving after it has fallen 120 cm?

The 700-g mass rises 120 cm while the 800-g mass falls 120 cm,
so the net change in PEG is

Change in PEG = (0.70 kg)(9.81 m/s2)(1.20 m) − (0.80 kg)(9.81 m/s2)(1.20
m) = –1.18 J,

which is a loss in PEG. Because energy is conserved, the KE of the
masses must increase by 1.18 J. Therefore,

The system started from rest, so υi = 0. We solve the above
equation for υf and find υf = 1.25 m/s.

6.14 [II]   Figure 6-3 shows a bead sliding on a wire. If friction forces are
negligible and the bead has a speed of 200 cm/s at A, what will be
its speed (a) at point-B? (b) At point-C?



Fig. 6-3

The energy of the bead is conserved, so we can write

(a) Here, υi = 2.0 m/s, hi = 0.80 m, and hf = 0. Using these values,
while noticing that m cancels out, gives υf = 4.4 m/s.

(b) Here, υi, = 2.0 m/s, hi = 0.80 m, and hf = 0.50 m. Using these
values leads to υf = 3.1 m/s.

Alternative Method

Since energy, E, is conserved,

6.15 [II]   Suppose the bead in Fig. 6-3 has a mass of 15 g and a speed of 2.0
m/s at A, and it stops as it reaches point-C. The length of the wire
from A to C is 250 cm. How large an average friction force
opposed the motion of the bead?

When the bead moves from A to C, it experiences a change in its
total energy: it loses both KE and PEG. This total energy change is
equal to the work done on the bead by the friction force.



Therefore,

Here υA = 2.0 m/s, υC = 0, hA – hC = 0.30 m, s = 2.50 m, and m =
0.015 kg. Using these values, we find that Ff = 0.030 N.

Alternative Method

Since energy, E, is conserved

Ei = Ef

There is energy lost to friction, hence,

KEi + PEGi = KEf + PEGf + Wf

where the work done overcoming friction is Wf = Ffs. Hence,

and

6.16 [II]   A 1200-kg car is coasting down a 30° hill as shown in Fig. 6-4. At
a time when the car’s speed is 12 m/s, the driver applies the
brakes. What constant force F (parallel to the road) must result if
the car is to stop after traveling 100 m?

The change in total energy of the car (KE + PEG) is equal to the
work done on it by the braking force F. This work is Fscos180°
because F retards the car’s motion. We have



Fig. 6-4

where m = 1200 kg, υf = 0, υi = 12 m/s, hf – hi = (100 m) sin 30°
and s = 100 m

With these values, the equation yields F = 6.7 kN.

Alternative Method

Since energy, E, is conserved

Ei = Ef

There is energy removed, hence,

where WB = Fs is the work done (i.e., energy removed) by the
brakes (i.e., by the car). Thus, since υf = 0 and hf = 0,

All of the initial energy is converted to thermal energy (WB = Fs)
by the brakes.

6.17 [II]   A ball at the end of a 180-cm-long string swings as a pendulum as
shown in Fig. 6-5. The ball’s speed is 400 cm/s as it passes
through its lowest position. (a) To what height h above this
position will it rise before stopping? (b) What angle does the
pendulum then make to the vertical? Neglect all forms of friction.



(a) The pull of the string on the ball is always perpendicular to the
ball’s motion and therefore does no work on the ball. Consequently,
the ball’s total energy remains constant; it loses KE but gains an
equal amount of PEG. That is,

Since υf = 0 and υi = 4.00 m/s, we find h = 0.815 5 m as the
height to which the ball rises.

(b) From Fig. 6-5,

which gives θ = 56.8°.

Alternative Method

Since energy, E, is conserved

Ei = Ef

There is no energy lost to friction, hence,



Fig. 6-5

Fig. 6-6

6.18 [II]   A 500-g block is shot up the incline in Fig. 6-6 with an initial
speed of 200 cm/s. How far will it go if the coefficient of kinetic
friction between it and the incline is 0.150? Use energy
considerations to solve the problem.

We will need to know the energy expended in overcoming
friction. To determine that, find the friction force on the block
using

As the block slides up the incline a distance D, it rises a distance D
sin 25.0°. Because the change in energy of the block equals the
work done on it by the friction force, we have

Notice that as the KE decreases the PE increases. In other words,



the KE provides the energy to overcome both gravity and friction.

The friction force opposes the motion, it’s down the incline, while
the displacement is up the incline; hence, the work it does is
negative.

We know υi = 2.00 m/s and υf = 0. Notice that the mass of the
block could be canceled out in this case (but only because Ff is
given in terms of it). Substitution yields D = 0.365 m.

Alternative Method

Since energy is conserved,

Ei = Ef

Here some of the initial energy goes into overcoming friction—
call it Wf and so

Given that D is the distance traveled along the incline

6.19 [II]   A 60 000-kg train is being dragged along a straight line up a 1.0
percent grade (i.e., the road rises 1.0 m for each 100 m traveled
horizontally) by a steady drawbar pull of 3.0 kN parallel to the
incline. The friction force opposing the motion of the train is 4.0
kN. The train’s initial speed is 12 m/s. Through what distance s
will the train move along its tracks before its speed is reduced to
9.0 m/s? Use energy considerations.

The change in total energy of the train is due to the work done by
the friction force (which is negative) and the drawbar pull (which



is positive):

Change in KE + change in PEG = Wdrawbar +Wfriction

The train loses KE and gains PEG. It rises a height h = s sinθ,
where θ is the incline angle and tanθ = 1/100. Hence, θ = 0.573°,
and h = 0.010 s (at small angles tanθ ≈ sinθ). Therefore,

from which we obtain s = 274 m = 0.27 km.

6.20 [III] An advertisement claims that a certain 1200-kg car can accelerate
from rest to a speed of 25 m/s in a time of 8.0 s. What average
power must the motor develop to produce this acceleration? Give
your answer in both watts and horsepower. Ignore friction losses.

The work done in accelerating the car is

The time taken for this work to be performed is 8.0 s. Therefore,
to two significant figures,

Converting from watts to horsepower, we have

6.21 [III] A 0.25-hp motor is used to lift a load at the rate of 5.0 cm/s. How
great a load can it raise at this constant speed?

Assume the power output of the motor to be 0.25 hp = 186.5 W. In
1.0 s, the load mg is lifted a distance of 0.050 m. Therefore,

Work done in 1.0 s = (weight)(height change in 1.0 s) = (mg)(0.050 m)



By definition, Power = Work / Time, and so

Using g = 9.81 m/s2, we find that m = 381 kg. The motor can lift a
load of about 0.38 × 103 kg at this speed.

6.22 [III] Repeat Problem 6.20 but this time the data apply to a car going up
a 20° incline.

Work must be done to lift the car as well as to accelerate it:

where hf – hi = s sin 20° and s is the total distance the car travels
along the incline in the 8.0 s under consideration. Knowing υi = 0,
υf = 25 m/s, and t = 8.0 s, we have

6.23 [III] In unloading grain from the hold of a ship, an elevator lifts the
grain through a distance of 12 m. Grain is discharged at the top of
the elevator at a rate of 2.0 kg each second, and the discharge
speed of each grain particle is 3.0 m/s. Find the minimum power
rating for a motor that can elevate grain in this way.

The power output of the motor is

The mass transported per second, m/t, is 2.0 kg/s. Using this value
yields a power requirement of 0.24 kW.



SUPPLEMENTARY PROBLEMS

6.24 [I]    A force of 3.0 N acts through a distance of 12 m in the direction of
the force. Find the work done.

6.25 [I]    A box is pulled across a level floor a distance of 100 m. Given that
2000 J of work was done in overcoming friction, what was the
average friction force? [Hint: Draw a diagram.]

6.26 [I]    An automobile is pushed 10.0 ft by a woman exerting 80.0 lb of
force horizontally on the vehicle. How much work does she do (a)
in ft ⋅ lb and (b) in joules? [Hint: 1 ft ⋅ lb = 1.356 J.]

6.27 [I]    A steady force of 500 N is applied horizontally to push a loaded
cart at a constant speed. How far would the cart move when 3500
J of work is done on it by that applied force?

6.28 [I]    Suppose that a 100-kg crate is to be raised 20.0 m into the air by a
crane. How much work will be done on the crate?

6.29 [I]    A 10.0-kg flowerpot falls off a windowsill 30.0 m above the street.
In falling to the ground, how much work is done on the pot by the
gravitational interaction?

6.30 [II]   How much work in total must a 200-lb man do climbing to the top
of the 555-ft-tall Washington Monument carrying a 10.0-kg
backpack? [Hint: 1 lb = 4.448 N.]

6.31 [I]    A 4.0-kg object is lifted 1.5 m. (a) How much work is done against
the Earth’s gravity? (b) Repeat if the object is lowered instead of
lifted.

6.32 [I]    A uniform rectangular marble slab is 3.4 m long and 2.0 m wide. It
has a mass of 180 kg. It is originally lying on the flat ground with
its 3.4-m × 2.0-m surface facing up. How much work is needed to
stand it on its short end? [Hint: Think about its center of gravity.]



6.33 [I]    How large a force is required to accelerate a 1300-kg car from rest
to a speed of 20 m/s in a horizontal distance of 80 m?

6.34 [I]    A 1200-kg car going 30 m/s applies its brakes and skids to rest. If
the friction force between the sliding tires and the pavement is
6000 N, how far does the car skid before coming to rest?

6.35 [I]    A proton (m = 1.67 × 10−27 kg) that has a speed of 5.0 × 106 m/s
passes through a metal film of thickness 0.010 mm and emerges
with a speed of 2.0 × 106 m/s. How large an average force
opposed its motion through the film?

6.36 [I]    A 200-kg cart is pushed slowly at a constant speed up an incline.
How much work does the pushing force, which is parallel to the
incline, do in moving the cart up to a platform 1.5 m above the
starting point if friction is negligible?

6.37 [II]   Repeat Problem 6.36 if the distance along the incline to the
platform is 7.0 m and a friction force of 150 N opposes the
motion.

6.38 [II]   A 50 000-kg freight car is pulled 800 m up along a 1.20 percent
grade at constant speed. (a) Find the work done against gravity by
the drawbar pull. (b) If the friction force retarding the motion is
1500 N, find the total work done.

6.39 [II]   A 60-kg woman walks up a flight of stairs that connects two floors
3.0 m apart. (a) How much lifting work is done by the woman? (b)
By how much does the woman’s PEG change?

6.40 [II]   A pump lifts water from a lake to a large tank 20 m above the lake.
How much work against gravity does the pump do as it transfers
5.0 m3 of water to the tank? One cubic meter of water has a mass
of 1000 kg.

6.41 [II]   Just before striking the ground, a 2.00-kg mass has 400 J of KE. If
friction can be ignored, from what height was it dropped?



6.42 [II]   A 0.50-kg ball falls past a window that is 1.50 m in vertical length.
(a) How much did the KE of the ball increase as it fell past the
window? (b) If its speed was 3.0 m/s at the top of the window,
what was its speed at the bottom?

6.43 [II]   At sea level a nitrogen molecule in the air has an average
translational KE of 6.2 × 10−21 J. Its mass is 4.7 × 10−26 kg. (a) If
such a molecule could shoot straight up without striking other air
molecules, how high would it rise? (b) What is that molecule’s
initial upward speed?

6.44 [II]   The coefficient of sliding friction between a 900-kg car and the
pavement is 0.80. If the car is moving at 25 m/s along level
pavement when it begins to skid to a stop, how far will it go before
coming to rest?

6.45 [II]   Consider the simple pendulum shown in Fig. 6-7. (a) If it is
released from point-A, what will be the speed of the ball as it
passes through point-C? (b) What is the ball’s speed at point-B?
[Hint: How far has it fallen upon arriving at point-B?]

Fig. 6-7



Fig. 6-8

6.46 [II]   A 1200-kg car coasts from rest down a driveway that is inclined
20° to the horizontal and is 15 m long. How fast is the car going at
the end of the driveway if (a) friction is negligible and (b) a
friction force of 3000 N opposes the motion?

6.47 [II]   The driver of a 1200-kg car notices that the car slows from 20 m/s
to 15 m/s as it coasts a distance of 130 m along level ground. How
large a force opposes the motion?

6.48 [II]   A 2000-kg elevator rises from rest in the basement to the fourth
floor, a distance of 25 m. As it passes the fourth floor, its speed is
3.0 m/s. There is a constant frictional force of 500 N. Calculate the
work done by the lifting mechanism.

6.49 [II]   Figure 6-8 shows a bead sliding on a wire. How large must height
h1 be if the bead, starting at rest at A, is to have a speed of 200
cm/s at point-B? Ignore friction.

6.50 [II]   In Fig. 6-8, h1 = 50.0 cm, h2 = 30.0 cm, and the length along the
wire from A to C is 400 cm. A 3.00-g bead released at A coasts to
point-C and stops. How large an average friction force opposed its
motion?

6.51 [III] In Fig. 6-8, h1 = 200 cm, h2 = 150 cm, and at A the 3.00-g bead has
a downward speed along the wire of 800 cm/s. (a) How fast is the
bead moving as it passes point-B if friction is negligible? (b) How
much energy did the bead lose to friction work if it rises to a



height of 20.0 cm above C after it leaves the wire?

6.52 [I]    Imagine a 60.0-kg skier standing still on the top of a snow-covered
hill 150 m high. Neglecting any friction losses, how fast will she
be moving at the bottom of the hill? Does her mass matter? [Hint:
Remember that Ei = Ef.]

6.53 [I]    Considering the skier in the previous problem, suppose she starts
down the slope moving at 10.0 m/s. Neglecting any friction losses,
how fast will she be moving at the bottom of the hill? [Hint:
Remember that Ei = Ef.]

6.54 [II]   Considering the skier in the previous problem, suppose she starts
down the slope moving at 10.0 m/s. If she loses 1200 J to friction,
how fast will she be moving at the bottom of the hill? Should your
answer be more or less than the answer to the previous problem?
[Hint: Remember that Ei = Ef. Don’t cancel her mass now.]

6.55 [II]   A 10.0-kg block is launched up a 30.0° inclined plane at a speed of
20.0 m/s. As it slides it loses 200 J to friction. How far along the
incline will it travel before coming to rest?

6.56 [I]    Calculate the average power required to raise a 150-kg drum to a
height of 20 m in a time of 1.0 minute. Give your answer in both
kilowatts and horsepower.

6.57 [I]    Compute the power output of a machine that lifts a 500-kg crate
through a height of 20.0 m in a time of 60.0 s.

6.58 [I]    An engine expends 40.0 hp in propelling a car along a level track at
a constant speed of 15.0 m/s. How large is the total retarding force
acting on the car? Remember that 1 hp = 745.7 W.

6.59 [II]   A 1000-kg auto travels up a 3.0 percent grade at 20 m/s. Find the
cruising power required, neglecting friction.

6.60 [II]   A 900-kg car whose motor delivers a maximum power of 40.0 hp
to its wheels can maintain a steady speed of 130 km/h on a



horizontal roadway. How large is the friction force that impedes
its motion at this speed?

6.61 [II]   Water flows from a reservoir at the rate of 3000 kg/min, to a
turbine 120 m below. If the efficiency of the turbine is 80 percent,
compute the power output of the turbine. Neglect friction in the
pipe and the small KE of the water leaving the turbine. Don’t
forget that it’s only 80 percent efficient.

6.62 [II]   Find the mass of the largest box that a 40-hp engine can pull along
a level road at 15 m/s if the friction coefficient between road and
box is 0.15.

6.63 [II]   A 1300-kg car is to accelerate from rest to a speed of 30.0 m/s in a
time of 12.0 s as it climbs a 15.0° hill. Assuming uniform
acceleration, what minimum power is needed to accelerate the car
in this way?

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.24 [I]    36 J

6.25 [I]    20 N

6.26 [I]    (a) 800 ft ⋅ lb; (b) 1.08 kJ

6.27 [I]    7.00 m

6.28 [I]    19.6 kJ

6.29 [I]    2.94 kJ

6.30 [I]    0.167 MJ

6.31 [I]    (a) 59 J; (b) −59 J



6.32 [I]    3.0 kJ

6.33 [I]    3.3 kN

6.34 [I]    90 m

6.35 [I]    1.8 × 10−9 N

6.36 [I]    2.9 kJ

6.37 [II]   4.0 kJ

6.38 [II]   (a) 4.70 MJ; (b) 5.91 MJ

6.39 [II]   (a) 1.8 kJ; (b) 1.8 kJ

6.40 [II]   9.8 × 105 J

6.41 [II]   20.0 m

6.42 [II]   (a) 7.4 J; (b) 6.2 m/s

6.43 [II]   (a) 14 km; (b) 0.51 km/s

6.44 [II]   40 m

6.45 [II]   (a) 3.8 m/s; (b) 3.4 m/s

6.46 [II]   (a) 10 m/s; (b) 5.1 m/s

6.47 [II]   0.81 kN

6.48 [II]   0.51 MJ

6.49 [II]   20.4 cm

6.50 [II]   1.47 mN

6.51 [III] (a) 10.2 m/s; (b) 105 mJ



6.52 [I]    54.2 m/s; her mass cancels out.

6.53 [I]    55.2 m/s

6.54 [II]   54.8 m/s; less than

6.55 [II]   36.7 m

6.56 [I]    0.49 kW or 0.66 hp

6.57 [I]    1.63 kW

6.58 [I]    1.99 kN

6.59 [II]   5.9 kW or 7.9 hp

6.60 [II]   826 N

6.61 [II]   47 kW or 63 hp

6.62 [II]   1.4 × 103 kg

6.63 [II]   98.3 kW or 132 hp



Simple Machines

A Machine is any device by which the magnitude, direction, or method of
application of a force is changed so as to achieve some advantage. Examples
of simple machines are the lever, inclined plane, pulley, crank and axle, and
jackscrew.

The Principle of Work that applies to a continuously operating machine is

This is, of course, an application of conservation of energy.
In machines that operate for only a short time, some of the input work

may be used to store energy within the machine. An internal spring might be
stretched, or a movable pulley might be raised, for example.

Mechanical Advantage: The actual mechanical advantage (AMA) of a
machine is

The ideal mechanical advantage (IMA) of a machine is

Because friction is always present, the AMA is always less than the IMA. In
general, both the AMA and IMA are greater than one.

The Efficiency of a machine is



The efficiency is also equal to the ratio AMA/IMA.

PROBLEM SOLVING GUIDE

When doing pulley problems, study the diagram to determine how many
separate ropes are involved; the tension is the same all along each individual
rope. One rope strung around four or five pulleys [as in Fig. 7-2(d)] is still
one rope. Now, determine how many lengths of any given rope support each
movable pulley [2 in Fig. 7-2(a); 2 in (b); 2 and another 2 in (c); 4 in (d)].
Consider the movable weightless pulley attached to the load to be part of the
load. If N lengths of (a single) rope support the load FW, then the tension in
that rope equals FW/N. Study Problem 7.5. Draw free-body diagrams.

SOLVED PROBLEMS

7.1 [I]     In a particular hoist system, the load is lifted 10 cm for each 70 cm
of movement of the rope that operates the device. What is the
smallest input force that could possibly lift a 5.0-kN load?

The most advantageous situation possible is that in which all the
input work is used to lift the load—that is, in which friction and
other loss mechanisms are negligible. In that case,

Work input = Lifting work

If the load is lifted a distance l, the lifting work is (5.0 kN)(l). The
input force F, however, must work through a distance 7.0l. The
above equation then becomes

(F)(7.0l) = (5.0 kN)(l)

which gives F = 0.71 kN as the smallest possible force required.

7.2 [III]   A hoisting machine lifts a 3000-kg load a height of 8.00 m in a
time of 20.0 s. The power supplied to the engine is 18.0 hp.
Compute (a) the work output, (b) the power output and power



input, and (c) the efficiency of the engine and hoist system.

The efficiency is 88%; the differences arise from the rounding off
process.

7.3 [II]    What power in kW is supplied to a 12.0-hp motor having an
efficiency of 90.0 percent when it is delivering its full rated
output?

From the definition of efficiency,

7.4 [II]    For the three levers shown in Fig. 7-1, determine the vertical forces
F1, F2, and F3 required to support the load FW = 90 N. Neglect the
weights of the levers. Also find the IMA, AMA, and efficiency for
each system.

Fig. 7-1

In each case, we take torques about the fulcrum point as axis. If
we assume that the lifting is occurring slowly at constant speed,
then the systems are in equilibrium; the clockwise torques balance
the counterclockwise torques. (Recall that torque = rF sin θ.)

Clockwise torque = Counterclockwise torque

(a) (2.0 m)(90 N)(1) = (4.0 m)(F1)(1)         from which        F1 =



45 N
(b) (1.0 m)(90 N)(1) = (3.0 m)(F2)(1)         from which        F2 =

30 N
(c) (2.0 m)(90 N)(1) = (5.0 m)(F3) sin 60°  from which       F3 = 42

N

To find the IMA of the system in Fig. 7-1(a), we notice that the
load moves only half as far as the input force, and so

IMA = Distance ratio = 2.0

Similarly, in Fig. 7-1(b). IMA = 3/1 = 3. In Fig. 7-1(c), however,
the lever arm is (5.0 m) sin 60° = 4.33 m and so the distance ratio
is 4.33/2 = 2.16. To summarize:

The efficiencies are 1.0 because we have neglected friction at the
fulcrums.

7.5 [II]    Determine the force F required to hold a 100-N load FW in
equilibrium for each of the pulley systems shown in Fig. 7-2.
Neglect friction and the weights of the pulleys. In each case
determine the net force on the ceiling.



Fig. 7-2

(a) Load FW is supported by two ropes; each rope exerts an
upward pull of FT = FW. Because the rope is continuous and
the pulleys are frictionless, FT = F. Then

The net downward force on the ceiling is 50 N + 100 N.

(b) Here, too, the load is supported by the tensions in two ropes,
FT and F, where FT = F. Then

The net downward force on the ceiling is 50 N. The net
upward force on the load is 100 N.

(c) Let FT1 and FT2 be tensions around pulleys-A and -B,
respectively. Pulley-A is in equilibrium, and

Pulley-B, too, is in equilibrium, and

But F = FT2 and so F = FW = 25 N.

The ceiling pulls up on the pulley system with a net force of 50
N + 25 N + 50 N, or 125 N. Meanwhile the total downward
force on the system (and so on the ceiling) is 100 N + 25 N, or
125 N.

(d) Four ropes, each with the same tension FT, support the load
FW. Therefore,



Since there are 5 ropes pulling down on the ceiling bracket, the
ceiling must pull up on the pulley system with a net force of 5
× 25 N, or 125 N. The net downward force on the pulley
system (and so on the ceiling) is the load 100 N plus F = 25 N.

(e) We see at once F = FT1. Because the pulley on the left is in
equilibrium,

FT2 − FT1 − F = 0

But FT1 = F and so FT2 = 2F. The pulley on the right is also in
equilibrium, and therefore,

FT1 + FT2 + FT1 − FW = 0

Recalling that FT1 = F and that FT2 = 2F gives 4F = FW; hence,
F = 25 N.

The uppermost pulley supports a downward force of 2 × 50 N,
and so the net upward force exerted by the ceiling is 100 N +
25 N. Again, the net downward force on the pulley system
(and so on the ceiling) is the load 100 N plus F = 25 N, or 125
N.

7.6 [II]   Using the wheel and axle illustrated in Fig. 7-3, a 400-N load can be
raised by a force of 50 N applied to the rim of the wheel. The radii
of the wheel (R) and axle (r) are 85 cm and 6.0 cm, respectively.
Determine the IMA, AMA, and efficiency of the machine.



Fig. 7-3

We know that in one turn of the wheel-axle system, a length of
cord equal to the circumference of the wheel or axle will be
wound or unwound.

Fig. 7-4

7.7 [II]    The inclined plane depicted in Fig. 7-4 is 15 m long and rises 3.0
m. (a) What minimum force F parallel to the plane is required to
slide a 20-kg box up the plane if friction is neglected? (b) What is
the IMA of the plane? (c) Find the AMA and efficiency if a 64-N
force is actually required.

(a) There are several ways to approach this. Let’s consider energy.
Since there is no friction, the work done by the pushing force,
(F)(15 m), must equal the lifting work done, (20 kg)(9.81



m/s2)(3.0 m). Equating these two expressions and solving for F
gives F = 39 N.

7.8 [III]   As seen in Fig. 7-5, a jackscrew has a lever arm of 40 cm and a
pitch of 5.0 mm. If the efficiency is 30 percent, what horizontal
force F applied perpendicularly at the end of the lever arm is
required to lift a load FW of 270 kg?

Fig. 7-5

When the jack handle is moved around one complete circle, the
input force moves a distance

2πr = 2π(0.40 m)

while the load is lifted a distance of m. The IMA is therefore



Since efficiency = AMA / IMA, we have

AMA = (Efficiency)(IMA) = (0.30)(502) = 0.15 × 103

But AMA = (Load lifted)/(Input force) and therefore

7.9 [III]   A differential pulley (chain hoist) is drawn in Fig. 7-6. Two
toothed pulleys of radii r = 10 cm and R = 11 cm are fastened
together and turn on the same axle. A continuous chain passes
over the smaller (10 cm) pulley, then around the movable pulley at
the bottom, and finally around the 11-cm pulley. The operator
exerts a downward force F on the chain to lift the load FW. (a)
Determine the IMA. (b) What is the efficiency of the machine if
an applied force of 50 N is required to lift a load of 700 N?

Fig. 7-6

(a) Suppose that the force F moves down a distance sufficient to



cause the upper rigid system of pulleys to turn one revolution.
Then the smaller upper pulley unwinds a length of chain equal
to its circumference, 27πr, while the larger upper pulley winds
a length 2πR. As a result, the chain supporting the lower pulley
is shortened by a length 2πR - 2πr. The load FW is lifted half
this distance, or

when the input force moves a distance 2πR. Therefore,

(b) From the data,

SUPPLEMENTARY PROBLEMS

7.10 [I]    A motor furnishes 120 hp to a device that lifts a 5000-kg load to a
height of 13.0 m in a time of 20 s. Find the efficiency of the
machine.

7.11 [I]    Refer back to Fig. 7-2(d). If a force of 200 N is required to lift a
50-kg load, find the IMA, AMA, and efficiency for the system.

7.12 [II]  In Fig. 7-7, the 300-N load is balanced by a force F in both
systems. Assuming efficiencies of 100 percent, how large is F in
each system? Assume all ropes to be vertical.



Fig. 7-7

7.13 [II]  Consider a machine for which an applied force moves 3.3 m to
raise a load 8.0 cm. Find the (a) IMA and (b) AMA if the
efficiency is 60 percent. What load can be lifted by an applied
force of 50 N if the efficiency is (c) 100 percent and (d) 60
percent?

7.14 [II]  With a wheel and axle, a force of 80 N applied to the rim of the
wheel can lift a load of 640 N. The diameters of the wheel and
axle are 36 cm and 4.0 cm, respectively. Determine the AMA,
IMA, and efficiency of the machine.

7.15 [II]  A hydraulic jack in a gas station lifts a 900-kg car a distance of 0.25
cm when a force of 150 N pushes a piston through a distance of 20
cm. Find the IMA, AMA, and efficiency.

7.16 [II]  The screw of a mechanical press has a pitch of 0.20 cm. The
diameter of the wheel to which a tangential turning force F is
applied is 55 cm. If the efficiency is 40 percent, how large must F
be to produce a force of 12 kN in the press?

7.17 [II]  The diameters of the two upper pulleys of a chain hoist (Fig. 7-6)
are 18 cm and 16 cm. If the efficiency of the hoist is 45 percent,



what force is required to lift a 400-kg crate?

ANSWERS TO SUPPLEMENTARY PROBLEMS

7.10 [I]   36%

7.11 [I]   4, 2.5, 61%

7.12 [II]  (a) 100 N; (b) 75.0 N

7.13 [II]  (a) 41; (b) 25; (c) 2.1 kN; (d) 1.2 kN

7.14 [II]  8.0, 9.0, 89%

7.15 [II]  80, 59, 74%

7.16 [II]  35 N

7.17 [II]  0.48 kN



Impulse and Momentum

The Linear Momentum ( ) of a body is the product of its mass (m) and
velocity ( ):

Momentum is a vector quantity whose direction is that of the velocity. The
units of momentum are kg · m/s in the SI.

An Impulse is the product of a force ( ) and the time interval (Δt) over
which the force acts:

Impulse is a vector quantity whose direction is that of the force. Its units are
N · s in the SI.

An Impulse Causes a Change in Momentum: The change of momentum
produced by an impulse is equal to the impulse in both magnitude and
direction. Thus, if a constant force  acting for a time Δt on a body of mass
m changes its velocity from an initial value  to a final value , then

This is the so-called impulse equation.
Newton’s Second Law, as he gave it, is  from which it follows

that . Moreover,  and if m is constant, 
.



Conservation of Linear Momentum: If the net external force acting on a
system of objects is zero, the vector sum of the momenta of the objects will
remain constant.

In Collisions and Explosions, the vector sum of the momenta just before
the event equals the vector sum of the momenta just after the event. The
vector sum of the momenta of the objects involved does not change during
the collision or explosion. Provided there are no external forces acting on
the system, linear momentum is always conserved.

Thus, when two bodies of masses m1 and m2 collide,

where  and  are the velocities before impact, and  and  are the
velocities after. In one dimension, in component form,

and similarly for the y- and z-components when the collision takes place in
three dimensions. Remember that vector quantities are always boldfaced and
velocity is a vector. On the other hand, u1x, u2x, υ1x, and υ2x are the scalar
values of the velocities (they can be positive or negative). A positive
direction is initially selected and vectors pointing opposite to this have
negative numerical scalar values.

You will often see Eq. (8.5) written alternatively as

where υ1i and υ2i and υ1f and υ2 f are the scalar values of the initial and final
velocities; that means their numerical values can be either positive or
negative.

All collisions lie between (and include) the two extremes of being
completely or perfectly elastic (or just elastic) and completely or perfectly
inelastic. Macroscopic objects can never collide elastically; there will
always be some energy of motion transferred into internal energy when the
bodies distort upon impact. A collision is said to be completely inelastic
when the colliding objects stick together. The two extremes are the easiest
to deal with mathematically.



A Perfectly Inelastic Collision is one where the two colliding objects stick
together after impact. Conservation of momentum supplies the one essential
equation and allows us to solve for one unknown. Energy is always
conserved, but since some is imparted internally, the KE before impact will
not equal the KE after impact.

A Perfectly Elastic Collision is one in which linear momentum is
conserved and moreover the sum of the translational KEs of the objects is
not changed during the collision. In the case of two bodies,

where u1 and u2 are the speeds before the collision and υ1 and υ2 are the
speeds after the collision. With two independent conservation equations we
can solve for two unknowns. You will often see Eq. (8.7) alternatively
written as

Figure 8-1 is a visual summary; it depicts three elastic collisions in which
a moving mass m1 crashes into a stationary mass m2. In (a) m1 = m2 and the
balls essentially exchange velocities. In (b) m1 < m2, and the balls move off
in opposite directions. In (c) m1 > m2, and both balls move off in the
direction in which m1 was originally traveling.



Fig. 8-1

Coefficient of Restitution: For any collision between two bodies in which
the bodies move only along a single straight line (e.g., the x-axis), a
coefficient of restitution e is defined. It is a pure number given by

where u1x and u2x are the speeds before impact, and υ1x and υ2 x are the
speeds after impact. Notice that |u1x − u2x| is the relative speed of approach
and |υ2x − υ1x| is the relative speed of recession.

For a perfectly elastic collision, e = 1. For inelastic collisions, e < 1. For a
perfectly inelastic collision, the bodies stick together and, e = 0.

The Center of Mass of an object (of mass m) is the single point that moves



in the same way as a point mass (of mass m) would move when subjected to
the same external forces that act on the object. That is, if the resultant force
acting on an object of mass m is , the acceleration of the center of mass of
the object is given by .

If the object is considered to be composed of tiny masses m1, m2, m3, and
so on, at coordinates (x1, y1, z1), (x2, y2, z2), and so on, then the coordinates
of the center of mass are given by

where the sums extend over all masses composing the object. In a uniform
gravitational field, the center of mass and the center of gravity coincide.

PROBLEM SOLVING GUIDE

The equation for conservation of momentum applied to collisions [Eq. (8.5)
or (8.6)] is stated with plus signs. That means that when numbers go into the
equation for the scalar velocities, those numbers must carry the proper signs.
Pick a direction of motion to be positive and enter the speeds with + and/or
− signs accordingly. Study Problem 8.2.

SOLVED PROBLEMS

8.1 [I]      An 8.0-g bullet is fired horizontally into a 9.00-kg cube of wood,
which is at rest on a frictionless air table. The bullet lodges in the
wood. The cube is free to move and has a speed of 40 cm/s after
impact. Find the initial velocity of the bullet.

This is an example of a completely inelastic collision for which
momentum is conserved, although KE is not. Consider the system
(cube + bullet). The velocity, and hence the momentum, of the
cube before impact is zero. Take the bullet’s initial motion to be
positive in the positive x-direction. The momentum conservation
law tells us that



8.2 [II]    A 16-g mass is moving in the +x-direction at 30 cm/s, while a 4.0-g
mass is moving in the −x-direction at 50 cm/s. They collide head-
on and stick together. Find their velocity after the collision.
Assume negligible friction.

This is a completely inelastic collision for which KE is not
conserved, although momentum is. Let the 16-g mass be m1 and
the 4.0-g mass be m2. Take the +x-direction to be positive. That
means that the velocity of the 4.0-g mass has a scalar value of υ2x
= −50 cm/s. We apply the law of conservation of momentum to
the system consisting of the two masses:

(Notice that the 4.0-g mass has negative momentum.) Hence,  =
0.14 m/s—POSITIVE X-DIRECTION

8.3 [I]      A 2.0-kg brick is moving at a speed of 6.0 m/s. How large a force F
is needed to stop the brick in a time of 7.0 × 10−4 s?

Since we have a force and the time over which it acts, that
suggests using the impulse equation (i.e., Newton’s Second Law):

from which F = −1.7 × 104 N. The minus sign indicates that the
force opposes the motion.

8.4 [II]    A 15-g bullet moving at 300 m/s passes through a 2.0-cm-thick
sheet of foam plastic and emerges with a speed of 90 m/s.



Assuming that the speed change takes place uniformly, what
average force impeded the bullet’s motion through the plastic?

We can determine the change in momentum, and that suggests
using the impulse equation to find the force F on the bullet as it
takes a time Δt to pass through the plastic. Taking the initial
direction of motion to be positive,

F Δt = mυf − mυi

We can find Δt by assuming uniform deceleration and using x =
υaυ t, where x = 0.020 m and  This gives
Δt = 1.026 × 10−4 s. Then

(F)(1.026 × 10−4 s) = (0.015 kg)(90 m/s) − (0.015 kg)(300 m/s)

which yields F = −3.1 × 104 N as the average retarding force. How
could this problem have been solved using F = ma instead of the
impulse equation? By using energy methods?

8.5 [II]    The nucleus of an atom has a mass of 3.80 × 10−25 kg and is at rest.
The nucleus is radioactive and suddenly ejects a particle of mass
6.6 × 10−27 kg and speed 1.5 × 107 m/s. Find the recoil speed of
the nucleus that is left behind.

The particle flies off in one direction, the nucleus recoils away in
the opposite direction, and momentum is conserved. Take the
direction of the ejected particle as positive. We are given mni =
3.80 × 10−25 kg, mp = 6.6 × 10−27 kg, mnf = mni − m p = 3.73 ×
10−25 kg, and υpf = 1.5 × 107 m/s; find the final speed of the
nucleus, υnf.



The fact that this is negative tells us that the velocity vector of the
nucleus points in the negative direction, opposite to the velocity of
the particle, which we took to be positive.

8.6 [II]    A 0.25-kg ball moving in the +x-direction at 13 m/s is hit by a bat.
Its final velocity leaving the bat is 19 m/s in the x-direction. The
bat acts on the ball for 0.010 s. Find the average force F exerted
on the ball by the bat.

The problem provides the time over which a required force acts, as
well as enough information to compute the change in momentum.
That suggests the impulse equation (i.e., Newton’s Second Law).
We have υi = 13 m/s and υf = −19 m/s. Taking the initial direction
of motion as positive, the impulse equation is

from which F = −0.80 kN.

8.7 [II]    Two girls (masses m1 and m2) are on roller skates and stand at rest,
close to each other and face to face. Girl-1 pushes squarely against
girl-2 and sends her moving backward. Assuming the girls move
freely on their skates, write an expression for the speed with which
girl-1 moves.

We take the two girls to comprise the system under consideration.
The problem states that girl-2 moves “backward,” so let that be the
negative direction; therefore, the “forward” direction is positive.
There is no resultant external force on the system (the push of one
girl on the other is an internal force), and so momentum is
conserved:

Girl-1 recoils with this speed. Notice that if m2 /m1 is very large,



υ1 is much larger than υ2. The velocity of girl-1, , points in the
positive forward direction. The velocity of girl-2, , points in the
negative backward direction. If we put numbers into the equation,
υ2 would have to be negative and υ1 would come out positive.

8.8 [II]    As shown in Fig. 8-2, a 15-g bullet is fired horizontally into a
3.000-kg block of wood suspended by a long cord. The bullet
lodges in the block. Compute the speed of the bullet if the impact
causes the block (and bullet) to swing 10 cm above its initial level.

Consider first the collision of block and bullet. During the
collision, momentum is conserved, so

where υ is the speed of the bullet just prior to impact, and V is the
speed of block and bullet just after impact.

We have two unknowns in this equation. To find another equation,
we can use the fact that the block swings 10 cm high. If we let
PEG = 0 at the initial level of the block, energy conservation tells
us that

From this V = 1.40 m/s. Substituting this combined speed into the
previous equation leads to υ = 0.28 km/s for the speed of the
bullet.



Fig. 8-2

Notice that we cannot write the conservation of energy equation 
, where m = 0.015 kg and M = 3.000 kg

because energy is lost (through friction) in the collision process.

8.9 [I]      Three point masses are placed on the x-axis: 200 g at x = 0, 500 g at
x = 30 cm, and 400 g at x = 70 cm. Find their center of mass.

We can make the calculation with respect to any point, but since
all the data is measured from the x = 0 origin, that point will do
nicely.

The center of mass is located at a distance of 0.39 m, in the
positive x-direction, from the origin.

The y- and z-coordinates of the center of mass are zero.

8.10 [II]  A system consists of the following masses in the xy-plane: 4.0 kg at
coordinates (x = 0, y = 5.0 m), 7.0 kg at (3.0 m, 8.0 m), and 5.0 kg
at (−3.0 m, −6.0 m). Find the position of its center of mass.



and zcm = 0. These distances are, of course, measured from the
origin (0, 0, 0,).

8.11 [III] Two identical railroad cars sit on a horizontal track, with a distance
D between their two centers of mass. By means of a cable between
them, a winch on one is used to pull the two together. (a) Describe
their relative motion. (b) Repeat the analysis if the mass of one car
is now three times that of the other.

Keep in mind that the velocity of the center of mass of a system
can only be changed by an external force. Here the forces due to
the cable acting on the two cars are internal to the two-car system.
The net external force on the system is zero, and so its center of
mass does not move, even though each car travels toward the
other. Taking the origin of coordinates at the center of mass,

where x1 and x2 are the positions of the centers of mass of the two
cars.

(a) If m1 = m2, this equation becomes

The two cars approach the center of mass, which is originally
midway between the two cars (that is, D/2 from each), in such
a way that their centers of mass are always equidistant from it.

(b) If m1 = 3m2, then we have

from which x1 =−x2 /3. Since m1 > m2, it must be that x1 < x2
proportionately. The two cars approach each other in such a
way that the center of mass of the system remains motionless



and the heavier car is always one-third as far away from it as
the lighter car.

Originally, because |x1| + |x2| = D, we had x2/3 + x2 = D. So m2
was originally a distance x2 = 3D/4 from the center of mass,
and m1 was a distance D/4 from it.

8.12 [III] A pendulum consisting of a ball of mass m is released from the
position shown in Fig. 8-3 and strikes a block of mass M. The
block slides a distance D before stopping under the action of a
steady friction force of 0.20Mg. Find D if the ball rebounds to an
angle of 20°.

Fig. 8-3

The pendulum ball falls through a height (L − L cos 37°) = 0.201L
and rebounds to a height (L − L cos 20°) = 0.060 3L. Because 

 for the ball, its speed at the bottom is 
. Thus, just before it hits the block, the ball has a speed

equal to . Since the ball rises up to a height of 0.060
3L after the collision, it must have rebounded with an initial speed
of .

Although KE is not conserved in the collision, momentum is.
Therefore, for the collision,



where V is the velocity of the block just after the collision. (Notice
the minus sign on the momentum of the rebounding ball.) Solving
this equation, we find

The block uses up its translational KE doing work against friction
as it slides a distance D. Therefore,

from which D = 2.4 (m/M)2L.

8.13 [II]  Two balls of equal mass approach the coordinate origin, one
moving downward along the y-axis at 2.00 m/s and the other
moving to the right along the −x-axis at 3.00 m/s. After they
collide, one ball moves out to the right along the +x-axis at 1.20
m/s. Find the scalar x and y velocity components of the other ball.

This is a two-dimensional collision and momentum must be
conserved independently in each perpendicular direction, x and y.
Take up and to the right as positive. Accordingly, keeping in mind
that before impact only one ball had an x-component of velocity,

Here υx is the unknown x-component of velocity of the second ball
acquired on impact. Since we know that the first ball lost some of
its x-momentum, the second ball must have gained it. Moreover,

Here υy is the y-component of velocity of the second ball. (Why
the minus sign?) Solving each equation, after cancelling the mass



we find that υx = 1.80 m/s and υy = −2.00 m/s.

8.14 [III] A 7500-kg truck traveling at 5.0 m/s east collides with a 1500-kg
car moving at 20 m/s in a direction 30° south of west. After
collision, the two vehicles remain tangled together. With what
speed and in what direction does the wreckage begin to move?

The original momenta are shown in Fig. 8-4(a), while the final
momentum M  is shown in Fig. 8-4(b). Momentum must be
conserved in both the north and east directions independently.
Therefore,

where M = 7500 kg + 1500 kg = 9000 kg, and υE is the scalar
eastward component of the velocity of the wreckage [see Fig. 8-
4(b)].

The first equation yields υE = 1.28 m/s, and the second υN = −1.67
m/s. The resultant is

The angle θ in Fig. 8-3(b) is

Fig. 8-4



8.15 [III] Two identical balls collide head-on. The initial velocity of one is
0.75 m/s—EAST, while that of the other is 0.43 m/s—WEST. If the
collision is perfectly elastic, what is the final velocity of each ball?

Because the collision is perfectly elastic, both momentum and KE
are conserved. Since the collision is head-on, all motion takes
place along a straight line. Take east as positive and call the mass
of each ball m. Momentum is conserved in a collision, so we can
write

where υ1 and υ2 are the final values. This equation simplifies to

Because the collision is assumed to be perfectly elastic, KE is also
conserved. Thus,

This equation can be simplified to

We can solve for υ2 in Eq. (1) to get υ2 = 0.32 − υ1 and substitute
that into Eq. (2). This yields

Using the quadratic formula,

from which υ1 = 0.75 m/s or −0.43 m/s. Substitution back into Eq.
(1) gives υ2 = −0.43 m/s or 0.75 m/s. Two choices for answers are



available:

We must discard the first choice because it implies that the balls
continue on unchanged; that is to say, no collision occurred. The
correct answer is therefore υ1 = −0.43 m/s and υ2 = 0.75 m/s,
which tells us that in a perfectly elastic, head-on collision between
equal masses, the two bodies simply exchange velocities. Hence, 

 = 0.43 m/s—WEST and  = 0.75 m/s—EAST.

Alternative Method

If we recall that e = 1 for a perfectly elastic head-on collision, then

which gives

Equations (1) and (3) determine υ1 and υ2 uniquely.

8.16 [III] A 1.0-kg ball moving at 12 m/s collides head-on with a 2.0-kg ball
moving in the opposite direction at 24 m/s. Determine the motion
of each after impact if (a) e = 2/3, (b) the balls stick together, and
(c) the collision is perfectly elastic.

In all three cases the collision occurs along a straight line, and
momentum is conserved. Hence,

which becomes

−36 m/s = υ1 + 2υ2

(a) When e = 2/3,



from which 24 m/s = υ2 − υ1. Combining this with the
momentum equation found above gives υ2 = −4.0 m/s and υ1 =
−28 m/s.

(b) In this case υ1 = υ2 = υ, and so the momentum equation becomes

(c) Here e = 1, and

from which υ2 − υ1 = 36 m/s. Adding this to the momentum
equation yields υ2 = 0. Using this value for υ2 then leads to υ1 =
−36 m/s.

8.17 [III] A ball is dropped from a height h above a tile floor and rebounds to
a height of 0.65h. Find the coefficient of restitution between ball
and floor.

Assign floor quantities the subscript 1, and ball quantities the
subscript 2. The initial and final velocities of the floor, u1 and υ1,
are zero. Therefore,

Since we know both the drop and rebound heights (h and 0.65h),
we can write equations for the interchange of PEG and KE before
and after the impact



Notice that the coefficient of restitution equals the square root of
the final rebound height over the initial drop height.

8.18 [III] The two balls depicted in Fig. 8-5 collide off center and bounce
away as shown. (a) What is the final velocity of the 500-g ball if
the 800-g ball has a speed of 15 cm/s after the collision? (b) Is the
collision perfectly elastic?

Fig. 8-5

(a) Take motion to the right as positive. From the law of conservation
of momentum,

from which υx = −0.228 m/s. Taking motion upward as
positive,

from which υy = 0.120 m/s. Then

and  = 0.26 m/s—RIGHT.

Furthermore, for the angle θ shown in Fig. 8-4,

8.19 [II]  What force is exerted on a stationary flat plate held perpendicular to



a jet of water as shown in Fig. 8-6? The horizontal speed of the
water is 80 cm/s, and 30 mL of the water hit the plate each second.
Assume the water moves parallel to the plate after striking it. One
milliliter (mL) of water has a mass of 1.00 g.

Fig. 8-6

This question deals with speed, mass, time, and force, and that
suggests impulse-momentum and Newton’s Second Law. The
plate exerts an impulse on the water and changes its horizontal
momentum. The water exerts a counterforce on the plate. Taking
the direction to the right as positive,

Let t be 1.00 s so that m will be the mass that strikes in 1.00 s,
namely 30 g. Then the above equation becomes

Fx (1.00 s) = (0.030 kg)(0 m/s) − (0.030 kg)(0.80 m/s)

from which Fx = −0.024 N. This is the force exerted by the plate
on the water. The law of action and reaction tells us that the jet
exerts an equal but opposite force on the plate.

8.20 [III] A rocket standing on its launch platform points straight upward. Its
engines are activated and eject gas at a rate of 1500 kg/s. The
molecules are expelled with an average speed of 50 km/s. How
much mass can the rocket initially have if it is slow to rise because
of the thrust of the engines?



The problem provides mass flow and speed, the product of which
is equivalent to the time rate-of-change of momentum. That
should bring to mind the impulse-momentum relationship, which,
of course, is Newton’s Second Law. Since the initial motion of the
rocket itself is negligible in comparison to the speed of the
expelled gas, we can assume the gas is accelerated from rest to a
speed of 50 km/s. The impulse required to provide this
acceleration to a mass m of gas is

But we are told that the mass ejected per second (m/Δt) is 1500
kg/s, and so the force exerted on the expelled gas is

F = (50 000 m/s)(1500 kg/s) = 75 MN

An equal but opposite reaction force acts on the rocket, and this is
the upward thrust on the rocket. The engines can therefore support
a weight of 75 MN, so the maximum mass the rocket could have is

SUPPLEMENTARY PROBLEMS

8.21 [I]    A ball having a mass of 0.500 kg is thrown at a speed of 20 m/s.
Determine the magnitude of its momentum.

8.22 [I]    A projectile experiences a force of 2.0 kN for a time of 3.6 ms.
What is the magnitude of the impulse it received? [Hint: ms means
millisecond.]

8.23 [I]    Imagine an automobile traveling at a speed υ. What happens to its
momentum when the speed doubles? What happens to the kinetic



energy when the speed doubles? What is the significance of that as
regards stopping the vehicle?

8.24 [I]    Imagine a space vehicle floating in the void. It fires a small thruster
that delivers a forward force of 2000 N for 25.0 s. Determine the
resulting change in momentum of the craft. Do you need the mass
of the ship?

8.25 [I]    A billiard ball moving at a speed υ1i strikes, head-on, another
billiard ball that is at rest. Assuming the collision is completely
elastic, show that

υ1i = υ1f + υ2 f

8.26 [I]    A billiard ball moving at a speed υ1i strikes, head-on, another
billiard ball that is at rest. Assuming the collision is completely
elastic, show that

8.27 [I]    Using the results of the previous two problems, prove that for this
particular collision

Explain why it then follows that υ1f = 0 and υ1i = υ2 f ; the balls
trade velocities (see Fig. 8-1).

8.28 [I]    Imagine that a 1.20-kg hard-rubber ball traveling at 10.0 m/s
bounces off a brick wall in an essentially elastic collision.
Determine the change in the momentum of the ball. [Hint: What
change in momentum will just stop the ball?]

8.29 [I]    Suppose the ball in the previous problem is in contact with the wall
for 1.1 ms. What average force does the wall exert on the ball?

8.30 [I]    A force of 1000 N is applied to a small space satellite for a time of
10.0 minutes. If the craft has a mass of 200 kg, what will be its



final speed? [Hint: Be careful with those exponents when using a
calculator.]

8.31 [I]    Typically, a tennis ball hit during a serve travels away at about 51
m/s. If the ball is at rest mid-air when struck, and it has a mass of
0.058 kg, what is the change in its momentum on leaving the
racket?

8.32 [I]    During a soccer game a ball (of mass 0.425 kg), which is initially at
rest, is kicked by one of the players. The ball moves off at a speed
of 26 m/s. Given that the impact lasted for 8.0 ms, what was the
average force exerted on the ball?

8.33 [II]  A 40 000-kg freight car is coasting at a speed of 5.0 m/s along a
straight level track when it strikes a 30 000-kg stationary freight
car and couples to it. What will be their combined speed after
impact?

8.34 [I]    An empty 15 000-kg coal car is coasting on a level track at 5.00
m/s. Suddenly 5000 kg of coal is dumped into it from directly
above it. The coal initially has zero horizontal velocity with
respect to the ground. Find the final speed of the car.

8.35 [II]  Sand drops at a rate of 2000 kg/min from the bottom of a stationary
hopper onto a belt conveyer moving horizontally at 250 m/min.
Determine the force needed to drive the conveyer, neglecting
friction. [Hint: How much momentum must be imparted to the
sand each second?]

8.36 [II]  Two bodies of masses 8 kg and 4 kg move along the x-axis in
opposite directions with velocities of 11 m/s—POSITIVE X-
DIRECTION and 7 m/s—NEGATIVE X-DIRECTION, respectively. They
collide and stick together. Find their combined velocity just after
collision.

8.37 [II]  A 1200-kg gun mounted on wheels shoots an 8.00-kg projectile
with a muzzle velocity of 600 m/s at an angle of 30 0° above the
horizontal. Find the horizontal recoil speed of the gun.



8.38 [I]    Three masses are placed on the y-axis: 2 kg at y = 300 cm, 6 kg at y
= 150 cm, and 4 kg at y = −75 cm. Find their center of mass.

8.39 [II]  Four masses are positioned in the xy-plane as follows: 300 g at (x =
0, y = 2.0 m), 500 g at (−2 0 m, −3.0 m), 700 g at (50 cm, 30 cm),
and 900 g at (−80 cm, 150 cm). Find their center of mass.

8.40 [II]  A ball of mass m sits at the coordinate origin when it explodes into
two pieces that shoot along the x-axis in opposite directions. When
one of the pieces (which has mass 0.270m) is at x = 70 cm, where
is the other piece? [Hint: What happens to the mass center?]

8.41 [II]  A ball of mass m at rest at the coordinate origin explodes into three
equal pieces. At some instant, one piece is on the x-axis at x = 40
cm and another is at x = 20 cm, y = −60 cm. Where is the third
piece at that instant?

8.42 [II]  A 2.0-kg block of wood rests on a long tabletop. A 5.0-g bullet
moving horizontally with a speed of 150 m/s is shot into the block
and lodges in it. The block then slides 270 cm along the table and
stops. (a) Find the speed of the block just after impact. (b) Find the
friction force between block and table assuming it to be constant.

8.43 [II]  A 2.0-kg block of wood rests on a tabletop. A 7.0-g bullet is shot
straight up through a hole in the table beneath the block. The
bullet lodges in the block, and the block flies 25 cm above the
tabletop. How fast was the bullet going initially?

8.44 [III] A 6000-kg truck traveling north at 5.0 m/s collides with a 4000-kg
truck moving west at 15 m/s. If the two trucks remain locked
together after impact, with what speed and in what direction do
they move immediately after the collision?

8.45 [I]    What average resisting force must act on a 3.0-kg mass to reduce
its speed from 65 cm/s to 15 cm/s in 0.20 s?

8.46 [II]  A 7.00-g bullet moving horizontally at 200 m/s strikes and passes
through a 150-g tin can sitting on a post. Just after impact, the can



has a horizontal speed of 180 cm/s. What was the bullet’s speed
after leaving the can?

8.47 [III] Two balls of equal mass, moving with speeds of 3 m/s, collide
head-on. Find the speed of each after impact if (a) they stick
together, (b) the collision is perfectly elastic, (c) the coefficient of
restitution is 1/3.

8.48 [III] A 90-g ball moving at 100 cm/s collides head-on with a stationary
10-g ball. Determine the speed of each after impact if (a) they
stick together, (b) the collision is perfectly elastic, (c) the
coefficient of restitution is 0.90.

8.49 [III] A ball is dropped onto a horizontal floor. It reaches a height of 144
cm on the first bounce, and 81 cm on the second bounce. Find (a)
the coefficient of restitution between the ball and floor and (b) the
height it attains on the third bounce. [Hint: Study Problem 8.17.]

8.50 [II]  Two identical balls undergo a collision at the origin of coordinates.
Before collision their scalar velocity components are (ux = 40
cm/s, uy = 0) and (ux = −30 cm/s, uy = 20 cm/s). After collision,
the first ball (the one moving along the x-axis) is standing still.
Find the scalar velocity components of the second ball. [Hint:
After the collision, the moving ball must have all of the
momentum of the system.]

8.51 [II]  Two identical balls traveling parallel to the x-axis have speeds of 30
cm/s and are oppositely directed. They collide off center perfectly
elastically. After the collision, one ball is moving at an angle of
30° above the +x-axis. Find its speed and the velocity of the other
ball.

8.52 [II]  (a) What minimum thrust must the engines of a 2.0 × 105 kg rocket
have if the rocket is to be able to slowly rise from the Earth when
aimed straight upward? (b) If the engines eject gas at the rate of 20
kg/s, how fast must the gaseous exhaust be moving as it leaves the
engines? Neglect the small change in the mass of the rocket due to



the ejected fuel. [Hint: Study Problem 8.20.]

ANSWERS TO SUPPLEMENTARY PROBLEMS

8.21 [I]    10 kg · m/s

8.22 [I]    7.2 N · s

8.23 [I]    Momentum doubles; KE quadruples; car is 4 times harder to stop.

8.24 [I]    50.0 × 103 kg · m/s; no

8.25 [I]    Use Eq. (8.6).

8.26 [I]    Use Eq. (8.8).

8.27 [I]    Since υ1f υ2 f = 0, one of those speeds has to be zero. The only way
that υ2 f could be zero is if its mass were infinite.

8.28 [I]    24.0 kg · m/s

8.29 [I]    21.8 kN

8.30 [I]    3.00 km/s

8.31 [I]    3.0 kg · m/s

8.32 [I]    1.4 kN

8.33 [II]  2.9 m/s

8.34 [I]    3.75 m/s

8.35 [II]  139 N

8.36 [II]  5 m/s—POSITIVE X-DIRECTION



8.37 [II]  3.46 m/s

8.38 [I]    y = 1 m, measured from the y = 0 origin

8.39 [II]  x = −0.57 m, and y = 0.28 m, both measured from the (0, 0) origin

8.40 [II]  at x = −26 cm

8.41 [II]  at x = −60 cm, y = 60 cm

8.42 [II]  (a) 0.37 m/s; (b) 0.052 N

8.43 [II]  0.64 km/s

8.44 [III] 6.7 m/s at 27° north of west

8.45 [I]    7.5 N

8.46 [II]  161 m/s

8.47 [III] (a) 0 m/s; (b) each rebounds at 3 m/s; (c) each rebounds at 1 m/s

8.48 [III] (a) 90 cm/s; (b) 80 cm/s, 1.8 m/s; (c) 81 cm/s, 1.7 m/s

8.49 [III] (a) 0.75; (b) 46 cm

8.50 [II]  υx = 10 cm/s, υy = 20 cm/s

8.51 [II]  30 cm/s, 30 cm/s at 30° below the −x-axis (opposite to the first ball)

8.52 [II]  (a) 20 × 105 N; (b) 98 km/s



Angular Motion in a Plane

Angular Displacement (θ) is usually expressed in radians, in degrees, or in
revolutions:

One radian is the angle subtended at the center of a circle by an arc equal in
length to the radius of the circle (see Fig. 9-1). Thus, an angle θ in radians is
given in terms of the arc length l it subtends on a circle of radius r by

Fig. 9-1

The radian measure of an angle is a dimensionless number. Radians, like
degrees, are not a physical unit—the radian is not expressible in meters,
kilograms, or seconds. Nonetheless, we will use the abbreviation rad to
remind us that we are working with radians. As we’ll soon see, “rad” does
not always carry through the equations in a consistent fashion. We will have
to remove it or insert it as needed.

The Angular Speed (ω) of an object whose axis of rotation is fixed is the



rate at which its angular coordinate, the angular displacement θ, changes
with time. If θ changes from θi to θf in a time t, then the average angular
speed is

The units of ωaυ are exclusively rad/s. Since each complete turn or cycle of
a revolving system carries it through 2π rad,

where f is the frequency often stated in revolutions per second, rotations per
second, or cycles per second. Today the standard unit of frequency is the
hertz, abbreviated Hz, where 1 cycle/second = 1 Hz. The quantity ω is also
called the angular frequency. We can associate a direction with ω and
thereby create a vector quantity . Thus, if the fingers of the right hand
curve around in the direction of rotation, the thumb points along the axis of
rotation in the direction of , the angular velocity vector.

The Angular Acceleration (α) of an object whose axis of rotation is fixed
is the rate at which its angular speed changes with time. If the angular speed
changes uniformly from ωi to ωf in a time t, then the angular acceleration
is constant and

The units of α are typically rad/s2, rev/min2, and so forth. It is possible to
associate a direction with Δω, and therefore with α, thereby specifying the
angular acceleration vector , but we will have no need to do so here.

Equations for Uniformly Accelerated Angular Motion are exactly
analogous to those for uniformly accelerated linear motion. In the usual
notation we have:



Taken alone, the second of these equations is just the definition of average
speed, so it is valid whether the acceleration is constant or not.

Relations Between Angular and Tangential Quantities: When a disk of
radius r rotates about a fixed central axis, a point on the rim of the disk is
described in terms of the circumferential distance l it has moved, its
tangential speed υ, and its tangential acceleration aT. These quantities are
related to the angular quantities θ, ω, and α, which describe the rotation of
the wheel, through the relations

provided radian measure is used for θ, ω, and α.
By simple reasoning, l can be shown to be the distance traveled by a

point on a belt wound around a portion of a rotating wheel, or the distance a
wheel would roll (without slipping) if free to do so. In such cases, υ and aT
refer to the tangential speed and acceleration of a point on the belt, or of the
center of the wheel, where r is the radius of the wheel. This can be seen in
Fig. 9-2 which depicts a rolling wheel uniformly accelerating at an angular
rate α (without slipping). The motion of the wheel can be thought of as
composed of a simultaneous rotation about its center O, and a translation of
O to O″. The point initially touching the ground (A), is in effect rotated into
A′ through an angle θ, and translated into A″ over a distance lO = rθ, which
is also the distance O translates. Seen by someone standing still, A moves
along a cycloid (the dotted curve) to its position at A″. The speed at which O
translates at any instant is υO = r ω, where ω is the angular speed at that
instant. The linear (or tangential) acceleration of O, which is constant since
α is constant, is aTO = rα.



Fig. 9-2

Centripetal Acceleration (aC): A point mass m moving with constant speed
υ around a circle of radius r is undergoing acceleration. Although the
magnitude of its linear velocity is not changing, the direction of the velocity
is continually changing. This change in velocity gives rise to an acceleration
aC of the mass, which is directed toward the center of the circle. We call this
acceleration the centripetal acceleration; its magnitude is given by

where υ is the speed of the mass around the perimeter of the circle.
Because υ = rω, we also have aC = rω2, where ω must be in rad/s. Notice

that the word acceleration is commonly used in physics as either a scalar or
a vector quantity. Fortunately, there’s usually no ambiguity.

The Centripetal Force ( ) is the force that must act on a mass m moving
in a circular path of radius r to give it the required centripetal acceleration
υ2/r. In other words, if a body is to move along a circular arc, it must
experience an inwardly directed “center seeking” force  pushing it off its
force-free straight-line inertial path. From F = ma, we have

where  is directed toward the center of the circular path. Centripetal force
is not a new kind of force; it’s just the name given to whatever force (be it
gravity, the tension in a string, magnetism, friction, etc.) that causes an



object to move (off it’s straight-line inertial path) along an arc.
Equation (9.8) says the faster an object circles around, the more force

will be needed to keep it in orbit. It also says the tighter the circle, the more
force is needed. Thus when no force acts, the body moves in a straight line.
Applying a small force always acting toward some central point will result
in a large circular arcing motion. Increasing FC produces a tighter (smaller
r) circular motion.

PROBLEM SOLVING GUIDE

Study Fig. 9-1 and make sure you understand that a radian is nothing more
than 57.3°. In this chapter, we work exclusively with radians. To convert a
number of degrees d to a number of radians r, use the ratio r/d = π/180. To
get the angular constant acceleration equations from the familiar linear set,
Eqs. (2.3) to (2.7), simply replace s by θ, υ by ω, and a by α; t stays t. Again
—try doing the [I]-level worked-out problems first. Cover the solutions and
look at them only after you’re finished or you get stuck. Wait a day or two
and then go back to any problem you could not do and try again, and again
if need be, until you really master it.

SOLVED PROBLEMS

9.1 [I]     Express each of the following in terms of other angular measures:
(a) 28°, (b)  rev/s, (c) 2.18 rad/s2.



9.2 [I]     The bob of a pendulum 90 cm long swings through a 15-cm arc, as
shown in Fig. 9-3. Find the angle θ, in radians and in degrees,
through which it swings.

Fig. 9-3

Recall that l = rθ applies only to angles in radian measure.
Therefore, in radians

9.3 [I]     A fan turns at a rate of 900 rpm (i.e., rev/min). (a) Find the angular
speed of any point on one of the fan blades. (b) Find the tangential
speed of the tip of a blade if the distance from the center to the tip



is 20.0 cm.

for all points on the fan blade.

(b) The tangential speed is rω, where ω must be in rad/s. Therefore,

υ = rω = (0.200 m)(94.2 rad/s) = 18.8 m/s

Notice that the rad does not carry through the equations
properly—we insert it or delete it as needed.

9.4 [I]     A belt passes over a wheel of radius 25 cm, as shown in Fig. 9-4. If
a point on the belt has a speed of 5.0 m/s, how fast is the wheel
turning?

Fig. 9-4

A point on the wheel’s circumference (i.e., on the belt) is moving
at a linear speed υ = rω. Hence,

As a rule, ω comes out in units of s−1 and the rad must be inserted
ad hoc.

9.5 [I]     A wheel of 40-cm radius rotates on a stationary central axle. It is



uniformly sped up from rest to 900 rpm in a time of 20 s. Find (a)
the constant angular acceleration of the wheel and (b) the
tangential acceleration of a point on its rim.

(a) Because the acceleration is constant, we can use the definition α =
(ωf − ωi)/t to get

(b) 

9.6 [II]    A pulley having a 5.0-cm radius is turning at 30 rev/s about a
central axis. It is slowed down uniformly to 20 rev/s in 2.0 s.
Calculate (a) the angular acceleration of the pulley, (b) the angle
through which it turns in this time, and (c) the length of belt it
winds in that same time.

Because the pulley is decelerating, we can anticipate that α will be
negative:

(a) 

And to two significant figures,

(b) 

(c) With θ = 314 rad

l = r θ = (0.050 m)(314 rad) = 16 m

Alternative Method



(b) 

9.7 [II]    A car has wheels each with a radius of 30 cm. It starts from rest and
(without slipping) accelerates uniformly to a speed of 15 m/s in a
time of 8.0 s. Find the angular acceleration of its wheels and the
number of rotations one wheel makes in this time.

Remember that the center of the rolling wheel accelerates
tangentially at the same rate as does a point on its circumference.
We know that aT = (υf − υi)/t, and so

Then aT = rα yields

Notice that we must introduce the proper angular measure,
radians.

Now use  to find

and to get the corresponding number of turns divide by 2π,

9.8 [II]    A spin-drier revolving at 900 rpm slows down uniformly to 300
rpm while making 50 revolutions. Find (a) the angular
acceleration and (b) the time required to turn through these 50
revolutions.



The initial angular speed (ωi) is 900 rev/min = 15.0 rev/s = 30.0π
rad/s and the final angular speed (ωf) is 300 rev/min = 5.00 rev/s =
10.0π rad/s.

(a) Thus using 

(b) Because  yields

9.9 [II]    A 200-g object is tied to the end of a cord and whirled in a
horizontal circle of radius 1.20 m at a constant 3.0 rev/s. Assume
that the cord is horizontal—that is, that gravity can be neglected.
Determine (a) the centripetal acceleration of the object and (b) the
tension in the cord.

(a) The object is not accelerating tangentially to the circle but is
undergoing a radial, or centripetal, acceleration given by

where ω must be in rad/s. Since 3.0 rev/s = 6.0π rad/s,

aC = (1.20 m)(6.0π rad/s)2 = 426 m/s2 = 0.43 km/s2

(b) To cause the acceleration found in (a), the cord must pull on the
0.200-kg mass with a centripetal force given by

FC = maC = (0.200 kg)(426 m/s2) = 85 N

This is the tension in the cord.

9.10 [II]  What is the maximum speed at which a car can round a curve of
25-m radius on a level road if the coefficient of static friction



between the tires and road is 0.80?

The radial force required to keep the car in the curved path (the
centripetal force) is supplied by friction between the tires and the
road. If the mass of the car is m, the maximum friction force
(which is the centripetal force) equals µsFN or 0.80 mg; this arises
when the car is on the verge of skidding sideways. Therefore, the
maximum speed is given by

9.11 [II]  A spaceship orbits the Moon at a height of 20 000 m. Assuming it
to be subject only to the gravitational pull of the Moon, find its
speed and the time it takes for one orbit. For the Moon, mm = 7.34
× 1022 kg and r = 1.738 × 106 m.

The gravitational force of the Moon on the ship supplies the
required centripetal force:

where R is the radius of the orbit. Letting h be the altitude (20 000
m), R = h + r. Solving for υ:

from which it follows that

9.12 [II]  As depicted in Fig. 9-5, a ball B is fastened to one end of a 24-cm
string, and the other end is held fixed at point O. The ball whirls in
the horizontal circle shown. Find the speed of the ball in its
circular path if the string makes an angle of 30° to the vertical.



Fig. 9-5

The only forces acting on the ball are the ball’s weight mg and the
tension FT in the cord. The tension must do two things: (1) balance
the weight of the ball by means of its vertical component, FT
cos30°; (2) supply the required centripetal force by means of its
horizontal component, FT sin30°. Therefore, we can write

Solving for FT in the first equation and substituting it in the second
gives

However, r =  = (0.24 m) sin 30° = 0.12 m and g = 9.81 m/s2,
from which υ = 0.82 m/s.

9.13 [III] As drawn in Fig. 9-6, a 20-g bead slides from rest at A along a
frictionless wire. If h is 25 cm and R is 5.0 cm, how large a force
must the wire exert on the bead when it is at (a) point-B and (b)
point-D?



(a) As a general rule, remember to keep a few more numerical figures
in the intermediate steps of the calculation than are to be found in the
answer. This will avoid round-off errors. Let us first find the speed of
the bead at point-B. It has fallen through a distance h − 2R and so its
loss in PEG is mg(h − 2R). This must equal its KE at point-B:

where υ is the speed of the bead at point-B. Hence,

As shown in Fig. 9-6(b), two forces act on the bead when it is
at B: (1) the weight of the bead mg and (2) the (assumed
downward) force F of the wire on the bead. Together, these
two forces must supply the required centripetal force, mυ2/R, if
the bead is to follow the circular path. Therefore, write

The wire must exert a 0.98 N downward force on the bead to
hold it in a circular path.

(b) The situation is similar at point-D, but now the weight is
perpendicular to the direction of the required centripetal force.
Therefore, the wire alone must furnish it. Proceeding as before,

Fig. 9-6



9.14 [III] As illustrated in Fig. 9-7, a 0.90-kg body attached to a cord is
whirled in a vertical circle of radius 2.50 m. (a) What minimum
speed υt must the body have at the top of the circle so as not to
depart from the circular path? (b) Under condition (a), what speed
υb will the object have after it “falls” to the bottom of the circle?
(c) Find the tension FTb in the cord when the body is at the bottom
of the circle and moving with the critical speed υb.

The object is moving at its slowest speed at the very top and
increases its speed as it revolves downward because of gravity (υb
> υt).

(a) As Fig. 9-7 shows, two radial forces act on the object at the top:
(1) its weight mg and (2) the tension FTt . The resultant of these two
forces must supply the required centripetal force.

For a given r, υ will be smallest when FTt = 0. In that case,

Using r = 2.50 m and g = 9.81 m/s2 gives υt = 4.95 m/s as the
speed at the top.

(b) In traveling from top to bottom, the body falls a distance 2r.
Therefore, with υt = 4.95 m/s as the speed at the top and with υb as the
speed at the bottom, conservation of energy provides

where we have chosen the bottom of the circle as the zero level
for PEG. Notice that m cancels. Using υt = 4.95 m/s, r = 2.50
m, and g = 9.81 m/s2 yields υb = 11.1 m/s.



(c) When the object is at the bottom of its path, we see from Fig. 9-7
that the unbalanced upward radial force on it is FTb − mg. This force
supplies the required centripetal force:

Using m = 0.90 kg, g = 9.81 m/s2, υb = 11.1 m/s, and r = 2.50
m leads to

Fig. 9-7

9.15 [III] A curve of radius 30 m is to be banked so that a car may make the
turn at a speed of 13 m/s without depending on friction. What
must be the slope of the roadway (the banking angle)?

The situation is diagramed in Fig. 9-8 if friction is absent. Only
two forces act upon the car: (1) the weight mg of the car (which is
straight downward) and (2) the normal force FN (which is
perpendicular to the road) exerted by the pavement on the car.

The force FN must do two things: (1) its vertical component, FN
cosθ, must balance the car’s weight; (2) its horizontal component,
FN sin θ, must supply the required centripetal force. In other



words, the road pushes horizontally on the car keeping it moving
in a circle. We can therefore write

Fig. 9-8

Dividing the second equation by the first causes FN and m to
cancel and results in

From this θ, the banking angle, must be 30°.

9.16 [III] As illustrated in Fig. 9-9, a thin cylindrical shell of inner radius r
rotates horizontally, about a vertical axis, at an angular speed ω. A
wooden block rests against the inner surface and rotates with it. If
the coefficient of static friction between block and surface is µs,
how fast must the shell be rotating if the block is not to slip and
fall? Assume r = 150 cm and µs = 0.30.



Fig. 9-9

The surface holds the block in place by pushing on it with a
centripetal force mrω2. This force is perpendicular to the surface;
it is the normal force that determines the friction on the block,
which in turn keeps it from sliding downward. Because Ff = µsFN
and FN = mrω2, we have

Ff = µsFN = µsmrω2

This friction force must balance the weight mg of the block if the
block is not to slip. Therefore,

Inserting the given values,

SUPPLEMENTARY PROBLEMS

9.17 [I]    A wheel spins around exactly 6 times. How many radians does that



correspond to?

9.18 [I]    Given that a disk revolves through 81.681 turns, how many radians
is that?

9.19 [I]    Convert (a) 50.0 rev to radians, (b) 48π rad to revolutions, (c) 72.0
rps to rad/s, (d) 1.50 × 103 rpm to rad/s, (e) 22.0 rad/s to rpm, (f)
2.000 rad/s to deg/s.

9.20 [I]    Express 40.0 deg/s in (a) rev/s, (b) rev/min, and (c) rad/s.

9.21 [I]    A 2.00-m-long steel rod, pivoted at one end, swings in a vertical
plane such that its lower end sweeps out an arc 10.0 cm long.
Determine the angle, in degrees and radians, through which the
rod swings.

9.22 [I]    A pendulum swings through an angle of 20.0°, while its bob
sweeps along an arc 100 cm long. Determine the length of the
pendulum. [Hint: Convert 20.0° to radians.]

9.23 [I]    A pebble is stuck in the tread of a tire having a diameter of 80.0
cm. The tire spins through 23.5 rotations in 75.0 s. How far does
the pebble travel in that time?

9.24 [I]    A sphere rotates about a fixed axis 10.0 times in 10.0 s. What is its
angular speed? [Hint: Angular speed is always in rad/s.]

9.25 [I]    A flywheel turns at 480 rpm. Compute the angular speed at any
point on the wheel and the tangential speed 30.0 cm from the
center.

9.26 [I]    It is desired that the outer edge of a grinding wheel 9.0 cm in radius
moves at a constant rate of 6.0 m/s. (a) Determine the angular
speed of the wheel. (b) What length of thin thread could be wound
on the rim of the wheel in 3.0 s when it is turning at this rate?

9.27 [I]    Through how many radians does a point fixed on the Earth’s
surface (anywhere off the poles) move in 6.00 h as a result of the



Earth’s rotation? What is the linear speed of a point on the
equator? Take the radius of the Earth to be 6370 km.

9.28 [II]  A wheel 25.0 cm in radius turning at 120 rpm uniformly increases
its frequency to 660 rpm in 9.00 s. Find (a) the constant angular
acceleration in rad/s2, and (b) the tangential acceleration of a point
on its rim.

9.29 [II]  The angular speed of a disk decreases uniformly from 12.00 to 4.00
rad/s in 16.0 s. Compute the angular acceleration and the number
of revolutions made in this time.

9.30 [II]  A car wheel 30 cm in radius is turning at a rate of 8.0 rev/s when
the car begins to slow uniformly to rest in a time of 14 s. Find the
number of revolutions made by the wheel and the distance the car
goes in the 14 s.

9.31 [II]  A wheel revolving at 6.00 rev/s has an angular acceleration of 4.00
rad/s2. Find the number of turns the wheel must make to reach
26.0 rev/s, and the time required.

9.32 [II]  A thin string wound on the rim of a wheel 20 cm in diameter is
pulled out at a rate of 75 cm/s causing the wheel to rotate about its
central axis. Through how many revolutions will the wheel have
turned by the time that 9.0 m of string have been unwound? How
long will it take?

9.33 [II]  A mass of 1.5 kg out in space moves in a circle of radius 25 cm at a
constant 2.0 rev/s. Calculate (a) the tangential speed, (b) the
acceleration, and (c) the required centripetal force for the motion.

9.34 [II]  (a) Compute the radial acceleration of a point at the equator of the
Earth. (b) Repeat for the North Pole of the Earth. Take the radius
of the Earth to be 6.37 × 106 m.

9.35 [I]    A mass is whirling in a circle at the end of a cable, out in the far
reaches of space. If its speed is doubled, all else kept constant,
what happens to the tension in the cable?



9.36 [I]    A mass is whirling in a circle at the end of a cable, out in the far
reaches of space. If the length of the cable is halved, all else kept
constant, what happens to the tension in it?

9.37 [I]    Imagine a weightless 2.00-kg mass far out in space. Suppose it is
whirling at the end of a string in a 2.00-m-diameter circle at a
speed of 4.00 m/s. Compute the tension in the string.

9.38 [I]    The old Bohr model of the hydrogen atom has a single electron
circling the nucleus at a speed of roughly 2.19 × 106 m/s. The
orbital radius is about 5.31 × 10−11 m. Find the approximate
centripetal acceleration of the electron.

9.39 [I]    With the previous problem in mind, what is the centripetal force on
the electron in the Bohr model of the hydrogen atom? [Hint: Use
Appendix G.]

9.40 [II]  An Earth satellite in a circular orbit is at an altitude of 3185.5 km.
The acceleration due to gravity at that distance is 4.36 m/s2, and
the mean radius of the Earth is 6371 km. (a) What is the radius of
the orbit? (b) Find the speed of the satellite.

9.41 [II]  A car moving at 5.0 m/s tries to round a corner in a circular arc of
8.0 m radius. The roadway is flat. How large must the coefficient
of friction be between wheels and roadway if the car is not to
skid?

9.42 [II]  A box rests at a point 2.0 m from the central vertical axis of a
horizontal circular platform that is capable of revolving in the
horizontal plane. The coefficient of static friction between box and
platform is 0.25. As the rate of rotation of the platform is slowly
increased from zero, at what angular speed will the box begin to
slide?

9.43 [II]  A stone rests in a pail which is tied to a rope and whirled in a
vertical circle of radius 60 cm. What is the least speed the stone
must have as it rounds the top of the circle (where the pail is
inverted) if it is to remain in contact with the bottom of the pail?



9.44 [II]  A pendulum 80.0 cm long is pulled to the side so that its bob is
raised 20.0 cm from its lowest position, and is then released. As
the 50.0 g bob moves through its lowest position, (a) what is its
speed and (b) what is the tension in the pendulum cord?

9.45 [II]  Refer back to Fig. 9-6. How large must h be (in terms of R) if the
frictionless wire is to exert no force on the bead as it passes
through point-B? Assume the bead is released from rest at A.

9.46 [II]  If, in Fig. 9-6 and in Problem 9.33, h = 2.5R, how large a force will
the 50-g bead exert on the wire as it passes through point-C?

9.47 [II]  A satellite orbits the Earth at a height of 200 km in a circle of radius
6570 km. Find the linear speed of the satellite and the time taken
to complete one revolution. Assume the Earth’s mass is 6.0 × 1024

kg. [Hint: The gravitational force provides the centripetal force.]

9.48 [III] A roller coaster is just barely moving as it goes over the top of the
hill. It rolls nearly without friction down the hill and then up over
a lower hill that has a radius of curvature of 15 m. How much
higher must the first hill be than the second if the passengers are to
exert no forces on their seats as they pass over the top of the lower
hill?

9.49 [III] The human body can safely tolerate a vertical acceleration 9.00
times that due to gravity. With what minimum radius of curvature
may a pilot safely turn the plane upward at the end of a dive if the
plane’s speed is 770 km/h?

9.50 [III] A 60.0-kg pilot in a glider traveling at 40.0 m/s wishes to turn an
inside vertical loop such that his body exerts a force of 350 N on
the seat when the glider is at the top of the loop. What must be the
radius of the loop under these conditions? [Hint: Gravity and the
seat exert forces on the pilot.]

9.51 [III] Suppose the Earth is a perfect sphere with R = 6370 km. If a person
weighs exactly 600.0 N at the North Pole, how much will the
person weigh at the equator? [Hint: The upward push of the scale



on the person is what the scale will read and is what we are calling
the weight in this case.]

9.52 [III] A mass m hangs at the end of a pendulum of length L, which is
released at an angle of 40.0° to the vertical. Find the tension in the
pendulum cord when it makes an angle of 20.0° to the vertical.
[Hint: Resolve the weight along and perpendicular to the cord.]

ANSWERS TO SUPPLEMENTARY PROBLEMS

9.17 [I]    12π

9.18 [I]    13.00

9.19 [I]    (a) 314 rad; (b) 24 rev; (c) 452 rad/s; (d) 157 rad/s; (e) 210
rev/min; (f) 114.6 deg/s

9.20 [I]    (a) 0.111 rev/s; (b) 6.67 rev/min; (c) 0.698 rad/s

9.21 [I]    5.00 × 10–2 rad; 2.86°

9.22 [I]    2.86 m

9.23 [I]    59.1 m

9.24 [I]    6.28 rad/s

9.25 [I]    50.3 rad/s, 15.1 m/s

9.26 [I]    (a) 67 rad/s; (b) 18 m

9.27 [I]    1.57 rad, 463 m/s

9.28 [II]  (a) 6.28 rad/s2; (b) 157 cm/s2

9.29 [II]  −0.500 rad/s2, 20.4 rev



9.30 [II]  56 rev, 0.11 km

9.31 [II]  502 rev, 31.4 s

9.32 [II]  14 rev, 12 s

9.33 [II]  (a) 3.1 m/s; (b) 39 m/s2 radially inward; (c) 59 N

9.34 [II]  (a) 0.033 7 m/s2; (b) zero

9.35 [I]    would be quadrupled

9.36 [I]    would double

9.37 [I]    32.0 N

9.38 [I]    9.03 × 1022 m/s2

9.39 [I]    8.23 × 10–8 N

9.40 [I]    (a) 9556.5 km; (b) 6.45 × 103 m/s

9.41 [II]  0.32

9.42 [II]  1.1 rad/s

9.43 [II]  2.4 m/s

9.44 [II]  (a) 1.98 m/s; (b) 0.735 N

9.45 [II]  2.5R

9.46 [II]  2.9 N

9.47 [II]  7.8 km/s, 88 min

9.48 [III] 7.5 m

9.49 [III] 519 m



9.50 [III] 102 m

9.51 [III] 597.9 N

9.52 [III] 1.29 mg



Rigid-Body Rotation

The Torque (τ) due to a force about an axis was defined in Chapter 5. It’s
also sometimes called the moment of the force.

The Moment of Inertia (I) of a body is a measure of the rotational inertia of
the body. If an object that is free to rotate about an axis is difficult to set into
rotation, its moment of inertia about that axis is large. An object with a small
I has little rotational inertia.

The moment of inertia of a point mass  with respect to an axis that is a
perpendicular distance r away is given by 

If a body is considered to be made up of point masses m1, m2, m3, …, at
respective perpendicular distances r1, r2, r3, …, from an axis, its moment of
inertia about that axis is

The units of I are kg · m2.
It is convenient to define a radius of gyration (k) for an object about an

axis by the relation

where M is the total mass of the object. Hence, k is the distance a point mass
M must be from the axis if the point mass is to have the same I as the object.

Torque and Angular Acceleration: A torque τ, acting on a body having a
moment of inertia I, produces in it an angular acceleration α given by



Here τ, I, and α are all computed with respect to the same axis. As for units, τ
is in N · m, I is in kg · m2, and α must be in rad/s2. (Recall the translational
equivalent, F = ma.)

The Kinetic Energy of Rotation (KEr) of a mass whose moment of inertia
about an axis is I, and which is rotating about that axis with an angular
velocity ω, is

where the energy is in joules and ω must be in rad/s. (Recall the translational
equivalent, KE = mυ2.)

Combined Rotation and Translation: The KE of a rolling ball or other
rolling object of mass M is the sum of (1) its rotational KE about an axis
through its center of mass (i.e., c.m.; see Chapter 8) and (2) the translational
KE of an equivalent point mass moving with the center of mass. In other
words, putting it loosely, the total KE equals the KE around the c.m. plus the
KE of the c.m. In symbols,

Note that I is the moment of inertia of the object about an axis through its
mass center.

The Work (W) done on a rotating body during an angular displacement θ by
a constant torque τ is given by

where W is in joules and θ must be in radians. (Recall the translational
equivalent, W = Fs.)

The Power (P) transmitted to a body by a torque is given by

where τ is the applied torque about the axis of rotation, and ω is the angular



speed, about that same axis. Radian measure must be used for ω. (Recall the
translational equivalent, P = Fυ.)

Angular Momentum ( ) is a vector quantity that has magnitude Iω and is
directed along the axis of rotation. When the fingers of the right hand curl in
the direction of the rotation, the thumb then points in the direction of .
That’s also the direction of  where

(Recall the translational equivalent ) If the net torque on a body is
zero, its angular momentum will remain unchanged in both magnitude and
direction. This is the Law of Conservation of Angular Momentum.

Angular Impulse has magnitude τt, where t is the time during which the
constant torque τ acts on the object. In analogy to the linear case, an angular
impulse τt on a body causes a change in angular momentum of the body
given by

Parallel-Axis Theorem: The moment of inertia I of a body about any axis
parallel to the axis passing through the center of mass is

The moments of inertia (about an axis through the center of mass) of several
uniform objects, each of mass M, are shown in Fig. 10-1.

Fig. 10-1

Analogous Linear and Angular Quantities:



If, in the equations for linear motion, we replace linear quantities by the
corresponding angular quantities, we get the corresponding equations for
angular motion. Thus,

In these equations, θ, ω, and α must be expressed in radian measure.

PROBLEM SOLVING GUIDE

As ever, draw a diagram for each problem. Familiarize yourself with Fig. 10-
1. Study the worked-out problems before attempting any solutions of your
own. You’ll need to be familiar with all the equations, (10.1) through (10.11).

SOLVED PROBLEMS

10.1 [I]      A small sphere of mass 2.0 kg revolves at the end of a 1.2-m-long
string in a horizontal plane around a vertical axis. Determine its
moment of inertia with respect to that axis.

A small sphere at the end of a long string resembles a point mass
revolving about an axis at a radial distance r. Consequently its
moment of inertia is given by

10.2 [I]      What is the moment of inertia of a homogeneous solid sphere of
mass 10 kg and radius 20 cm about an axis passing through its
center?



It follows from the last part of Fig. 10-1 that for a sphere

10.3 [I]      A thin cylindrical hoop having a diameter of 1.0 m and a mass of
400 g, rolls down the street. What is the hoop’s moment of inertia
about its central axis of rotation?

It follows from the first part of Fig. 10-1 that for a hoop

I = MR2 = (0.400 kg)(0.50 m)2 = 0.10 kg · m2

10.4 [II]    A wheel of mass 6.0 kg and radius of gyration 40 cm is rotating at
300 rpm. Find its moment of inertia and its rotational KE.

I = Mk2 = (6.0 kg)(0.40 m)2 = 0.96 kg · m2

The rotational KE is , where ω must be in rad/s. We

have

10.5 [II]    A 500-g uniform sphere of 7.0-cm radius spins frictionlessly at 30
rev/s on an axis through its center. Find its (a) KEr, (b) angular
momentum, and (c) radius of gyration.

We need the moment of inertia of a uniform sphere about an axis
through its center. From Fig. 10-1,

(a) Knowing that ω = 30 rev/s = 188 rad/s, we have

Notice that ω must be in rad/s.



(b) Its angular momentum is

L = Iω = (0.000 98 kg · m2)(188 rad/s) = 0.18 kg · m2/s

(c) For any object, I = Mk2, where k is the radius of gyration.
Therefore,

Notice that this is a reasonable value in view of the fact that
the radius of the sphere is 7.0 cm.

10.6 [II]    An airplane propeller has a mass of 70 kg and a radius of gyration
of 75 cm. Find its moment of inertia. How large a torque is needed
to give it an angular acceleration of 4.0 rev/s2?

I = Mk2 = (70 kg)(0.75 m)2 = 39 kg · m2

To be able to use τ = Iα, we must have α in rad/s2:

10.7 [III]   As shown in Fig. 10-2, a constant force of 40 N is applied
tangentially to the rim of a wheel having a 20-cm radius. The
wheel, which can rotate frictionlessly, has a moment of inertia of
30 kg · m2. Find (a) the resulting angular acceleration, (b) the
angular speed after 4.0 s from rest, and (c) the number of
revolutions made in that 4.0 s. (d) Show that the work done on the
wheel in those 4.0 s is equal to the KEr of the wheel after 4.0 s.



Fig. 10-2

(a) The torque on the wheel can be computed, and we know the
moment of inertia. Therefore, to determine the angular
acceleration, use τ = Iα,

(40 N)(0.20 m) = (30 kg · m2)α

from which it follows that α = 0.267 rad/s2 or 0.27 rad/s2.

(b) Use ωf = ωi + αt to find the final angular speed,

ωf = 0 + (0.267 rad/s2)(4.0 s) = 1.07 rad/s = 1.1 rad/s

(c) Because θ = ωaυt = (ωf + ωi)t,

θ =  (1.07 rad/s)(4.0 s) = 2.14 rad

which is equivalent to 0.34 rev.

(d) We know that work = torque × θ, and therefore

Work = (40 N × 0.20 m) (2.14 rad) = 17 J

Notice that radian measure must be used. The final KEr is 
, and so

The work done equals the KEr .

10.8 [II]    The wheel on a grinder is a homogeneous 0.90-kg disk with a 8.0-
cm radius. It coasts uniformly to rest from 1400 rpm in a time of
35 s. How large a frictional torque slows its motion?

Let’s first find α from the change in ω ; then we can use τ = Iα to
find τ. We know that f = 1400 rev/min = 23.3 rev/s, and since ω =



2πf, ωi = 146 rad/s and ωf = 0. Therefore,

We also need I. For a uniform disk,

10.9 [II]    Rework Problem 10.8 using the relation between work and
energy.

The wheel originally had KEr, but as the wheel slowed, this
energy was lost doing frictional work. We therefore write

To find θ, note that since α = constant,

From Problem 10.8, I = 0.002 9 kg · m2 and so the work-energy
equation is

 (0.002 9 kg · m2)(146 rad/s2) = τ(2550 rad)

from which τ = 0.012 N · m or 1.2 × 10−2 N · m.

10.10 [II]  A flywheel (i.e., a massive disk capable of rotating about its
central axis) has a moment of inertia of 3.8 kg · m2. What constant
torque is required to increase the wheel’s frequency from 2.0 rev/s
to 5.0 rev/s in 6.0 revolutions? Neglect friction.

Given



we can write

which leads to τ = 42 N · m. Notice in all of these problems that
radians and seconds must be used.

10.11 [III] As shown in Fig. 10-3, a mass m = 400 g hangs from the rim of a
frictionless pulley of radius r = 15 cm. When released from rest,
the mass falls 2.0 m in 6.5 s. Find the moment of inertia of the
wheel.

Fig. 10-3

The hanging mass linearly accelerates downward due to its
weight, and the pulley angularly accelerates clockwise due to the
torque produced by the rope. The two motions are linked by the
fact that aT = rα. Consequently we will need to determine aT, and
then α, and then FT, and then τ, and then I. Remember that



Newton’s Second Law is central here (i.e., τ = Iα for the wheel and
F = ma for the mass). First we find a using , since
the mass accelerates down uniformly:

which yields a = 0.095 m/s2, and that equals the tangential
acceleration (aT) of a point on the rim of the pulley, which equals
the acceleration a of the rope. Then, from aT = αr,

The net force on the mass m is mg − FT and so F = ma becomes

from which it follows that FT = 3.88 N.

Now τ = Iα for the wheel:

from which we get I = 0.92 kg · m2.

10.12 [III] Repeat Problem 10.11 using energy considerations.

Originally the mass m had PEG = mgh, where h = 2.0 m. It loses
all this PEG, and an equal amount of KE results. Part of this KE is
translational KE of the mass, and the rest is KEr of the wheel:

To find υf, note that υi = 0, y = 2 m, and t = 6.5 s. (Here a ≠ g for
the descending mass, because it does not fall freely.) Then



and  with υi = 0 leads to

υf = 2υaυ = 0.616 m/s

Moreover, υ = ωr and so

The above conservation of energy equation numerically becomes

from which we obtain I = 0.92 kg · m2.

10.13 [III] The moment of inertia of the frictionless pulley system illustrated
in Fig. 10-4 is I = 1.70 kg · m2, where r1 = 50 cm and r2 = 20 cm.
Find the angular acceleration of the pulley system and the tensions
FT1 and FT2.



Fig. 10-4

Note at the beginning that a = αr leads to a1 = (0.50 m)α and a2 =
(0.20 m)α. We shall write F = ma for both masses and τ = Iα for
the wheel. Taking the direction of motion (which we guess is
counterclockwise because the 2.0-kg mass generates the larger
torque) to be the positive direction:

These three equations have three unknowns. Solve for FT1 in the
first equation and substitute it in the third to obtain

(9.81 N · m) − (0.50 m)α − (0.20 m)FT2 = (1.70 kg · m2)α

Solve this equation for FT2 and substitute it in the second equation
to obtain

−11α + 49 − 17.6 = 0.36α

from which it follows that α = 2.8 rad/s2.

Now go back to the first equation to find FT1 = 17 N, and to the
second to find FT2 = 19 N.

10.14 [II]  Use energy methods to find how fast the 2.0-kg mass in Fig. 10-4
is descending after it has fallen 1.5 m from rest. Use the same
values for I, r1, and r2 as in Problem 10.13.

As the 2.0-kg mass descends, its PEG decreases. Meanwhile, the
1.8-kg mass rises and its PEG increases. The energy difference
(ΔPEG1 − ΔPEG2) must go into the linear KE of the two masses
and the rotational KE of the pulleys. If the angular speed of the
wheel is ω, then υ1 = r1ω and υ2 = r2ω. As the wheel turns through
an angle θ, the 2.0-kg mass falls through a distance s1 and the 1.8-



kg mass rises a distance s2. The angle θ links s1 and s2 together
and allows use to determine s2 from s1:

From energy conservation, because PEG is lost and KE is gained,

Since

the energy equation becomes

Solve this equation to find that ω = 4.07 rad/s. Then

υ1 = r1ω = (0.50 m)(4.07 rad/s) = 2.0 m/s

10.15 [I]    A motor runs at 20 rev/s and supplies a torque of 75 N · m. What
horsepower is it delivering?

Using ω = 20 rev/s = 40π rad/s, we have

P = τω = (75 N · m)(40π rad/s) = 9.4 kW = 13 hp

10.16 [I]    The driving wheel of a belt drive attached directly to an electric
motor (as depicted in Fig. 10-5) has a diameter of 38 cm and
operates at 1200 rpm. The motor turns the wheel, which moves the
continuous looping belt, whose other end goes around a pulley,
turning it and the shaft of some machine attached to it. The tension
in the belt is 130 N on the slack side and 600 N on the tight side.
Find the horsepower transmitted by the wheel to the belt and
hence to the machine. Assume friction is negligible and there are
no energy losses.



Fig. 10-5

The problem calls to mind the power equation P = τω. In this case,
two opposing torques, due to the two parts of the belt, act on the
wheel. We will have to evaluate the expression,

P = (τt − τs)ω

where τt and τs are the torques due to the tight and slack belt
forces. First determine ω:

10.17 [I]    A 0.75-hp motor acts for 8.0 s on an initially nonrotating wheel
having a moment of inertia 2.0 kg · m2. Find the angular speed
developed in the wheel, assuming no losses.

from which ω = 67 rad/s.

10.18 [II]  As illustrated in Fig. 10-6, a uniform solid sphere rolls on a
horizontal surface at 20 m/s and then rolls up the incline. If
friction losses are negligible, what will be the value of h where the
ball stops?



Fig. 10-6

The rotational and translational KE of the sphere at the bottom
will be changed to PEG when it stops. Accordingly,

For a solid sphere, . Also, ω = υ/r . Using these formulas,
the above equation becomes

With an incoming speed of υ = 20 m/s, the resulting height is h =
29 m. Notice that the answer does not depend upon the mass of the
ball or the angle of the incline.

10.19 [II]  Starting from rest, a hoop with a 20-cm radius rolls down a hill to
a place 5.0 m below its starting point. How fast is it rotating as it
rolls through that point? The hoop descends 5.0 m, whereupon an
amount of gravitational PE is converted into KE:

Here I = Mr2 for a hoop and υ = ωr. The above equation becomes

10.20 [II]  As a solid disk rolls up and over the top of a hill on a track, its
speed slows to 80 cm/s. It subsequently descends down the other
side of the hill. If friction losses are negligible, how fast is the disk



moving when it is 18 cm below the top?

At the top, the disk has translational and rotational KE, plus its
PEG relative to the point 18 cm below. At that final point, PEG has
been transformed to more KE of rotation and translation.
Conservation of energy can be expressed as

For a solid disk, . Also, ω = υ/r. Substituting these values
and simplifying yields

Employing υi = 0.80 m/s and h = 0.18 m, substitution gives υf =
1.7 m/s.

10.21 [II]  Find the moment of inertia of the four masses shown in Fig. 10-7
relative to an axis perpendicular to the page and extending (a)
through point-A and (b) through point-B.

Fig. 10-7

(a) From the definition of moment of inertia,

where r is half the length of the diagonal:



Thus, IA = 27 kg · m2.

(b) We cannot use the parallel-axis theorem here because neither A
nor B is at the center of mass. Hence, we proceed as before.
Because r = 1.25 m for the 2.0- and 3.0-kg masses, while 

 for the other two masses,

IB = (2.0 kg + 3.0 kg)(1.25 m)2 + (5.0 kg + 4.0 kg)(1.733 m)2 = 33 kg · m2

10.22 [II]  The uniform circular disk in Fig. 10-8 has a mass of 6.5 kg and a
diameter of 80 cm. Compute its moment of inertia about an axis
perpendicular to the page (a) through G and (b) through A.

(a) 

(b) By the result of (a) and the parallel-axis theorem,

IA = IG + Mh2 = 0.52 kg · m2 + (6.5 kg)(0.22 m)2 = 0.83 kg · m2

Fig. 10-8



Fig. 10-9

10.23 [III] A large roller in the form of a uniform cylinder is pulled by a
tractor to compact earth; it has a 1.80-m diameter and weighs 10
kN. If frictional losses can be ignored, what average horsepower
must the tractor provide to accelerate the cylinder from rest to a
speed of 4.0 m/s in a horizontal distance of 3.0 m?

The power required is equal to the work done by the tractor
divided by the time it takes. The tractor does the following work:

We have υf = 4.0 m/s, ωf = υf /r = 4.44 rad/s, and m = 10 000/9.81
= 1019 kg. The moment of inertia of the cylinder is

Substituting these values, the work required tums out to be 12.23
kJ.

We still need the time taken to do this work. Because the roller
went 3.0 m with an average velocity υaυ = (4 + 0) = 2.0 m/s,

10.24 [III] As illustrated in Fig. 10-9, a thin uniform rod AB of mass M and



length L is hinged at end A to the level floor. It originally stood
vertically. If allowed to fall to the floor as shown, with what
angular speed will it strike the floor?

Inasmuch as the rod’s center of mass is at point-G, using Fig. 10-1
and the parallel-axis theorem, the moment of inertia about a
transverse axis through end A is

As the rod falls to the floor, the center of mass falls a distance L/2.
Then

from which we are led to 

10.25 [I]    A student stands on a freely rotating platform, as shown in Fig.
10-10. With his arms extended, his rotational frequency is 0.25
rev/s. But when he draws his arm in, that frequency becomes 0.80
rev/s. Find the ratio of his moment of inertia in the first case to
that in the second.

Fig. 10-10



Because there is no external torque on the system (why?), the law
of conservation of angular momentum tells us that

Or, since we require Ii/If,

10.26 [II]  A horizontal disk with a moment of inertia I1 is rotating freely at
an angular speed of ω1 when a second, nonrotating disk with a
moment of inertia I2 is dropped on it (Fig. 10-11). The two then
rotate as a unit. Find the final angular speed. Ignore the central
rod.

From the law of conservation of angular momentum,

10.27 [II]  A disk like the lower one in Fig. 10-11 has a moment of inertia I1
about the vertical axis shown. What will be the new moment of
inertia if a tiny mass M is placed on it at a distance R from its
center?

The definition of moment of inertia tells us that, for the disk plus
an added point mass M,

where the sum extends over all the point masses composing the
original disk. With the value of that sum given as I1, the new
moment of inertia is I = I1 + MR2.



Fig. 10-11

10.28 [III] A disk like the lower one in Fig. 10-11 has a moment of inertia I =
0.015 0 kg · m2, and is turning at 3.0 rev/s. A trickle of sand falls
onto the revolving disk at a distance of 20 cm from the axis and
builds a 20-cm radius narrow ring of sand on it. How much sand
must fall on the disk for it to slow to 2.0 rev/s?

When a mass Δm of sand falls onto the disk, the moment of inertia
of the disk is increased by an amount r2 Δm, as shown in the
preceding problem. After a mass m has fallen on the disk, the
system’s moment of inertia has increased to I + Mr2. (Note how
this agrees with the hoop in Fig. 10-1.) Because the sand originally
had no angular momentum, the law of conservation of momentum
gives

from which

SUPPLEMENTARY PROBLEMS

10.29 [I]    A homogeneous cylinder of radius R and mass m has a moment of



inertia about its central axis given by . If a cylinder has a
mass of 4000 g and a diameter of 20 cm, what is its moment of
inertia about that central axis?

10.30 [I]    A uniform homogeneous solid disk lies in a horizontal plane.
What would happen to the value of its moment of inertia about its
central vertical axis if its diameter were doubled, keeping its mass
fixed? [Hint: See Fig. 10-1.]

10.31 [I]    A uniform homogeneous solid disk having a diameter of 1.80 m
and a mass of 2.00 kg is in a horizontal plane. Determine its
moment of inertia about its central vertical axis.

10.32 [I]    Picture a rigid rod of length L having negligible mass. It has two
identical tiny spheres both of mass m, one at each end of the rod.
Determine the moment of inertia about an axis perpendicular to
the rod passing through its center, in terms of m and L. [Hint: A
single point mass (m) has a moment of inertia about an axis a
distance r away of mr2. Here L is not r.]

10.33 [I]    Suppose we put a third tiny sphere of mass m at the center of the
rod in Problem 10.32. Determine the new moment of inertia about
an axis perpendicular to the rod passing through its center, in
terms of m and L.

10.34 [I]    Consider the arrangement in the previous problem. Compute the
new moment of inertia about an axis perpendicular to the rod
passing through either end, in terms of m and L.

10.35 [I]    A flat uniform homogeneous disk is horizontal. It has a radius R
and a mass M. A small mass m is dropped onto the disk at a
distance r from the center of the disk. Determine an expression for
the moment of inertia of the combination about the disk’s central
vertical axis.

10.36 [II]  A uniform homogeneous rod of length L and mass m is in a
horizontal plane. Determine its moment of inertia about a vertical
axis located at either end. [Hint: Use the Parallel-Axis Theorem



and Fig. 10-1.]

10.37 [II]  A uniform homogeneous rod of length L and mass m is in a
horizontal plane. It hangs from an essentially massless wire of
length L attached to the rod’s center of mass at one end and to a
ceiling hook at the other end. Determine the rod’s moment of
inertia about the hook. [Hint: Use the Parallel-Axis Theorem and
Fig. 10-1, and look at the previous problem.]

10.38 [II]  We wish to construct a rigid pendulum made of two uniform
homogeneous thin rods, each of length L and mass m. They are to
be connected so as to form an upside-down letter  in a vertical
plane. Determine its moment of inertia about a horizontal axis
perpendicular to the plane of the rods and located at the upper
vertical end. [Hint: Use the Parallel-Axis Theorem and Fig. 10-1,
and look at the previous problem.]

10.39 [I]    A force of 200 N acts tangentially on the rim of a wheel 25 cm in
radius. (a) Find the torque. (b) Repeat if the force makes an angle
of 40° to a spoke of the wheel.

10.40 [I]    An 8.0-kg wheel has a radius of gyration of 25 cm. (a) What is its
moment of inertia? (b) How large a torque is required to give it an
angular acceleration of 3.0 rad/s2?

10.41 [II]  Determine the constant torque that must be applied to a 50-kg
flywheel, with radius of gyration 40 cm, to give it a frequency of
300 rpm in 10 s if it’s initially at rest.

10.42 [II]  A 4.0-kg wheel of 20-cm radius of gyration is rotating at 360 rpm.
The retarding frictional torque is 0.12 N · m. Compute the time it
will take the wheel to coast to rest.

10.43 [II]  Compute the rotational KE of a 25-kg wheel rotating at 6.0 rev/s if
the radius of gyration of the wheel is 22 cm.

10.44 [II]  A cord 3.0 m long is wrapped around the axle of a wheel. The
cord is pulled with a constant force of 40 N, and the wheel



revolves as a result. When the cord leaves the axle, the wheel is
rotating at 2.0 rev/s. Determine the moment of inertia of the wheel
and axle. Neglect friction. [Hint: The easiest solution is obtained
via the energy method.]

10.45 [II]  A 500-g wheel that has a moment of inertia of 0.015 kg · m2 is
initially turning at 30 rev/s. It coasts uniformly to rest after 163
rev. How large is the torque that slowed it?

10.46 [II]  When 100 J of work is done on a stationary flywheel (that is
otherwise free to rotate in place), its angular speed increases from
60 rev/min to 180 rev/min. What is its moment of inertia?

10.47 [II]  A 5.0-kg wheel with a radius of gyration of 20 cm is to be given
an angular frequency of 10 rev/s in 25 revolutions from rest. Find
the constant unbalanced torque required.

10.48 [II]  An electric motor runs at 900 rpm and delivers 2.0 hp. How much
torque does it deliver?

10.49 [III] The driving side of a belt has a tension of 1600 N, and the slack
side has 500-N tension. The belt turns a pulley 40 cm in radius at a
rate of 300 rpm. This pulley drives a dynamo having 90 percent
efficiency. How many kilowatts are being delivered by the
dynamo?

10.50 [III] A 25-kg wheel has a radius of 40 cm and turns freely on a
horizontal axis. The radius of gyration of the wheel is 30 cm. A
1.2-kg mass hangs at the end of a thin cord that is wound around
the rim of the wheel. This mass falls and causes the wheel to
rotate. Find the acceleration of the falling mass and the tension in
the cord, whose mass can be ignored.

10.51 [III] A wheel and axle having a total moment of inertia of 0.002 0 kg ·
m2 is caused to rotate about a horizontal axis by means of an 800-
g mass attached to a weightless cord wrapped around the axle. The
radius of the axle is 2.0 cm. Starting from rest, how far must the
mass fall to give the wheel a rotational rate of 3.0 rev/s?



10.52 [II]  A solid uniform homogeneous disk of radius r is rolling along a
flat horizontal surface at a speed υ. Show that its total kinetic
energy is given by KE = mυ2.

10.53 [II]  A 20-kg solid disk (I = Mr2) rolls on a horizontal surface at the
rate of 4.0 m/s. Compute its total KE. [Hint: Do you really need
r?]

10.54 [II]  A 6.0-kg bowling ball (I = 2Mr2/5) starts from rest and rolls,
without sliding, down a gradual slope until it reaches a point 80
cm lower than its starting point. How fast is it then moving?
Ignore friction losses. Do you actually need the mass? [Hint: Why
were you not given r?]

10.55 [II]  A tiny solid ball (I = 2Mr2/5) rolls without slipping on the inside
surface of a hemisphere as shown in Fig. 10-12. (The ball is much
smaller than shown.) If the ball is released at A, how fast is it
moving as it passes (a) point-B, and (b) point-C? Ignore friction
losses. [Hint: Study the two previous questions. When it comes to
the ball’s descent, its own radius is negligible.]

Fig. 10-12

10.56 [I]    Compute the radius of gyration of a solid disk of diameter 24 cm
about an axis through its center of mass and perpendicular to its
face.



10.57 [I]    Figure 10-13 shows four masses that are held at the corners of a
square by a very light frame. What is the moment of inertia of the
system about an axis perpendicular to the page (a) through A and
(b) through B?

10.58 [I]    Determine the moment of inertia (a) of a vertical thin hoop of
mass 2 kg and radius 9 cm about a horizontal, parallel axis at its
rim; (b) of a solid sphere of mass 2 kg and radius 5 cm about an
axis tangent to the sphere.

Fig. 10-13

Fig. 10-14

10.59 [II]  Rod OA in Fig. 10-14 is a meterstick. It is hinged at O so that it



can turn in a vertical plane. It is held horizontally and then
released. Compute the angular speed of the rod and the linear
speed of its free end as it passes through the position shown in the
figure. [Hint: Show that I = mL2/3.]

10.60 [II]  Suppose that a satellite goes around the Moon in an elliptical
orbit. At its closest approach it has a speed υc and a radius rc from
the center of the Moon. At its farthest distance, it has a speed υf
and a radius rf. Find the ratio υc/υf. [Hint: Angular momentum is
conserved, and, moreover, the satellite can be treated as a point
mass.]

10.61 [II]  A large horizontal disk is rotating on a vertical axis through its
center. Its moment of inertia is I = 4000 kg · m2. The disk is
revolving freely at a rate of 0.150 rev/s when a 90.0-kg person
drops straight down onto it from an overhanging tree limb. The
person lands and remains at a distance of 3.00 m from the axis of
rotation. What will be the rate of rotation after the person has
landed?

10.62 [II]  Suppose a uniform spherical star of mass M and radius R collapses
to a uniform sphere of radius 10−5 R. If the original star had a
rotation rate of 1 rev each 25 days (as does the Sun), what will be
the rotation rate of the resulting object?

10.63 [II]  A 90-kg person stands at the edge of a stationary children’s merry-
go-round (essentially a disk) at a distance of 5.0 m from its center.
The person starts to walk around the perimeter of the disk at a
speed of 0.80 m/s relative to the ground. What rotation rate does
this motion impart to the disk if Idisk = 20 000 kg · m2? [Hint: For
the person, I = Mr2.]

ANSWERS TO SUPPLEMENTARY PROBLEMS



10.29 [I]    0.020 kg · m2

10.30 [I]    I would quadruple.

10.31 [I]    0.81 kg · m2

10.32 [I]    mL2

10.33 [I]    I does not change.

10.34 [I]    (5/4) mL2

10.35 [I]    

10.36 [II]  

10.37 [I]    I = (13/12) ML2

10.38 [II]  I = (17/12) ML2

10.39 [I]    (a) 50 N · m; (b) 32 N · m

10.40 [I]    (a) 0.50 kg · m2; (b) 1.5 N · m

10.41 [II]  25 N · m

10.42 [II]  50 s

10.43 [II]  0.86 kJ

10.44 [II]  1.5 kg · m2

10.45 [II]  0.26 N · m

10.46 [II]  0.63 kg · m2

10.47 [II]  2.5 N · m



10.48 [II]  16 N · m

10.49 [III] 12 kW

10.50 [III] 0.77 m/s2, 11 N

10.51 [III] 5.3 cm

10.52 [II]  

10.53 [II]  0.24 kJ

10.54 [II]  3.3 m/s

10.55 [II]  (a) 2.65 m/s; (b) 2.32 m/s

10.56 [I]    8.5 cm

10.57 [I]    (a) 1.4 kg · m2; (b) 2.1 kg · m2

10.58 [I]    (a) I = Mr2 + Mr2 = 0.03 kg · m2; (b) I = Mr2 + Mr2 = 7×10−3

kg · m2

10.59 [II]  5.0 rad/s, 5.0 m/s

10.60 [II]  rf /rc

10.61 [II]  0.125 rev/s

10.62 [II]  5 ×103 rev/s

10.63 [II]  0.018 rad/s



Simple Harmonic Motion and Springs

The Period (T) of a cyclic motion of a system, one that is vibrating or
rotating in a repetitive fashion, is the time required for the system to
complete one full cycle. In the case of vibration, it is the total time for the
combined back-and-forth motion of the system. The period is the number of
seconds per cycle.

The Frequency (f) is the number of vibrations made per unit time or the
number of cycles per second. Because (T) is the time for one cycle, the
frequency is f = 1/T. The unit of frequency is the hertz, where one cycle/s is
1 hertz (Hz).

The Graph of a Harmonic Vibratory Motion shown in Fig. 11-1 depicts
the up-and-down oscillation of a mass at the end of a spring. One complete
cycle is from a to b, or from c to d, or from e to f. The time taken for one
cycle is T, the period. The oscillation depicted here has a single frequency
and is sinusoidal or harmonic. All real vibrations are more complicated,
containing a range of frequencies.

Fig. 11-1

The Displacement (x or y) is the distance of the vibrating object from its



equilibrium position (normal rest position)—that is, from the center of its
vibration path. The maximum displacement is called the amplitude and it is
represented by the symbols x0, y0, or equally often by A (see Fig. 11-1).

A Restoring Force is one that opposes the displacement of the system; it is
necessary if vibration is to occur. In other words, a restoring force is always
directed so as to push or pull the system back to its equilibrium (normal rest)
position. For a mass at the end of a spring, the stretched spring pulls the
mass back toward the equilibrium position, while the compressed spring
pushes the mass back toward the equilibrium position.

A Hookean System also called an elastic system (a spring, wire, rod, etc.)
is one that returns to its original configuration after being distorted and then
released. Moreover, when such a system is stretched a distance x (for
compression, x is negative), the restoring force exerted by the spring is
given by Hooke’s Law

The minus sign indicates that the restoring force is always opposite in
direction to the displacement. The spring (or elastic) constant k has units of
N/m and is a measure of the stiffness of the spring. Most springs obey
Hooke’s Law for small distortions. This equation applies to any elastic
system, from a steel rod to a tree limb.

It is sometimes useful to express Hooke’s Law in terms of Fext, the
external force needed to stretch the spring a given amount x. This force is
the negative of the restoring force, and so

An object that is stretched beyond its so-called elastic limit will not
return to its original configuration and will no longer obey Hooke’s Law.

Simple Harmonic Motion (SHM) is the idealized vibratory motion a
system that obeys Hooke’s Law undergoes. The motion illustrated in Fig.
11-1 is SHM. Because of the resemblance of its graph to a sine or cosine
curve, SHM is frequently called sinusoidal or harmonic motion. A central
feature of SHM is that the system oscillates at a single constant frequency.
That’s what makes it “simple” harmonic.



The Elastic Potential Energy (PEe) stored in a Hookean spring (or wire,

tendon, diving board, etc.) that is distorted a distance x is . If the
amplitude of motion is x0 for a mass at the end of a spring, then the energy
of the vibrating system is , at all times. However, this energy is stored
exclusively in the spring only when x ± x0, that is, when the mass has its
maximum displacement. Otherwise, some of that energy appears as the KE
of the oscillating mass.

Energy Interchange between kinetic and potential energy occurs constantly
in a vibrating system. When the system passes through its equilibrium
position, KE = Maximum and PEe = 0. When the system has its maximum
displacement, then KE = 0 and PEe = Maximum. From the law of
conservation of energy, in the absence of friction-type losses,

KE + PEe = Constant

For a mass m at the end of a spring (whose own mass is negligible), this
becomes

where x0 is the amplitude of the motion.

Speed in SHM, with the mass at any location x, is determined via the above
energy equation as

Remember that speed is always a positive quantity; the absolute value signs
are here just to remind you of that.

Acceleration in SHM, with the mass at any location x, is determined via
Hooke’s Law, F = -kx, and F = ma; once displaced and released, the
restoring force drives the system. Equating these two expressions for F leads
to



The minus sign indicates that in SHM the direction of  (and ) is always
opposite to the direction of the displacement . Keep in mind that neither 
nor  is constant.

Reference Circle: Suppose that a point-P moves with constant speed |υ0|
around a circle, as shown in Fig. 11-2. This circle is called the reference
circle for SHM. Point-A is the projection of point-P on the x-axis, which
coincides with the horizontal diameter of the circle. The motion of point-A
back and forth about point O as center is SHM. The amplitude of the motion
is x0, the radius of the circle. The time taken for P to go around the circle
once is the period T of the motion. For P located at the position shown in
Fig. 11-2, the velocity, 0, of point-A has a scalar x-component of

When this quantity is positive (i.e., when θ is between 180° and 360°), x
points in the positive x-direction, when it’s negative (i.e., when θ is between
0° and 180°), points in the negative x-direction.

Fig. 11-2

Since notation is not universal, textbooks and standardized exams (e.g., the
GREs or MCATs) may use xmax or A for x0, and they may use υmax for υ0.

Period in SHM: The period T of a SHM is the time taken for point-P to go
once around the reference circle in Fig. 11-2 (i.e., the time required by the



system to go through one complete cycle). Therefore,

But |υ0| is the maximum speed of point-A in Fig. 11-2, that is, |υ0| is the
value of |υx| in SHM when x = 0:

This calls to mind the equation υ = rω, and that suggests that the angular
frequency ω (also known as the natural frequency, ω0) of the oscillator is
expressible as

This provides the period of SHM:

for a Hookean system (Fig. 11-3).



Fig. 11-3

Acceleration in Terms of T: By eliminating the quantity k/m between the
two equations a = -(k/m)x and , we find

Again, for SHM the acceleration is proportional to the negative of the
displacement.



The Simple Pendulum: A pendulum very nearly undergoes SHM if its
angle of swing is not large. The period of vibration for a pendulum of length
L at a location where the gravitational acceleration is g is given by

SHM can be expressed in analytic form by reference to Fig. 11-2, where we
see that the horizontal displacement of point-P is given by x = x0 cosθ. Since
θ = ωt = 2πft, where the angular frequency ω = 2πf is the angular velocity
of the reference point on the circle,

Similarly, the vertical component of the motion of point-P is given by

PROBLEM SOLVING GUIDE

Study Figs. 11-2 and 11-3. Notice where the speed is zero and where it’s
maximum. Do the same for the acceleration. As ever, draw a diagram for
each problem. The most important equations are (11.2), (11.4), (11.5),
(11.10), and (11.12). Once again—try doing the [I]-level worked-out
problems first. Cover the solutions and look at them only after you’re
finished or you get stuck. Wait a day or two and then go back to any
problem you could not do and try again, and again if need be, until you
really master it.

SOLVED PROBLEMS

11.1 [I]    For the motion illustrated in Fig. 11-4, what are the amplitude,
period, and frequency?



Fig. 11-4

The amplitude is the maximum displacement from the equilibrium
position and so is 0.75 cm. The period is the time for one complete
cycle, the time from A to B, for example. Therefore, the period is
0.20 s. The frequency is

11.2 [I]    A spring undergoes 12 vibrations in 40 s. Find the period and
frequency of the oscillation.

11.3 [I]    When a 400-g mass is hung at the end of a vertical spring, the
spring stretches 35 cm. Determine the elastic constant of the
spring. How much farther will it stretch if an additional 400-g
mass is hung from it?

Use Fext = ky, where that force is the weight of the hanging mass:

Once the elastic constant is known, we can determine how the
spring will behave. With an additional 400-g load, the total force
stretching the spring is 7.84 N. Then



Provided it’s Hookean, each 400-g load stretches the spring by the
same amount, whether or not the spring is already loaded.

11.4 [II]  A 200-g mass vibrates horizontally without friction at the end of a
horizontal spring for which k = 7.0 N/m. The mass is displaced 5.0
cm from equilibrium and released. Find (a) its maximum speed
and (b) its speed when it is 3.0 cm from equilibrium. (c) What is
its acceleration in each of these cases?

From the conservation of energy,

where k = 7.0 N/m, x0 = 0.050 m, and m = 0.200 kg. Solving for |υ|
gives

(a) The speed is a maximum when x = 0; that is, when the mass is
passing through the equilibrium position:

(b) When x = 0.030 m,

(c) Using F = ma and F = kx,

which yields a = 0 when the mass is at x = 0, and a = 1.1 ms2

when x = 0.030 m.

11.5 [II]    A 50-g mass vibrates in SHM at the end of a spring. The
amplitude of the motion is 12 cm, and the period is 1.70 s. Find:



(a) the frequency, (b) the spring constant, (c) the maximum speed
of the mass, (d) the maximum acceleration of the mass, (e) the
speed when the displacement is 6.0 cm and the mass is moving to
the right, and (f) the acceleration when x = 6.0 cm and the mass is
moving to the right.

(d) From a = -(k/m) x it is seen that a has maximum magnitude
when x has maximum magnitude, that is, at the endpoints x =
±x0. Thus the magnitude of the maximum acceleration (a0 or
amax) is given by

where magnitudes are always positive.

and, as ever, speed is positive.
(f) Here we want the acceleration. Since x = 6.0 cm, the force on

the mass is to the left and negative. Likewise the mass is
accelerating to the left even as it is moving to the right. Hence
the acceleration must be negative; the mass is slowing down.

11.6 [II]  A 50-g mass hangs at the end of a Hookean spring. When 20 g
more are added to the end of the spring, it stretches 7.0 cm more.
(a) Find the spring constant. (b) If the 20-g mass is now removed,
what will be the period of the motion?



(a) Under the weight of the 50-g mass, Fext1 = Kx1, where x1 is the
original stretching of the spring. When 20 g more are added, the
force becomes Fext1 + Fext2 = k(x1 + x2), where Fext2 is the
weight of 20 g and x2 is the stretching it causes. Subtracting the
two force equations leads to

Fext2 = Kx2

(Note that this is the same as Fext = Kx, where Fext is the additional
stretching force and x is the amount of stretch due to it. Hence, we
could have ignored the fact that the spring had the 50-g mass at its
end to begin with.) Solving for k,

11.7 [II]  As depicted in Fig. 11-5, a long, light piece of spring steel is
clamped at its lower end and a 2.0-kg ball is fastened to its top
end. A horizontal force of 8.0 N is required to displace the ball 20
cm to one side as shown. Assume the system to undergo SHM
when the ball is released. Find (a) the force constant of the spring
and (b) the period with which the ball will vibrate back and forth.



Fig. 11-5

11.8 [II]  When a mass m is hung on a spring, the spring stretches 6.0 cm and
comes to rest. Determine the system’s period of vibration if the
mass is pulled down a little more and then released.

Since the elastic constant is

Notice how the mass m cancels out of the equation.

11.9 [II]  Two identical springs have elastic constants k = 20 N/m. A 0.30-kg
mass is connected to them as shown in Fig. 11-6(a) and (b). Find
the period of oscillation for each system. Ignore friction forces.

Fig. 11-6

(a) Consider what happens when the mass is given a displacement
x > 0. One spring will be stretched an amount x, and the other



will be compressed an amount x. They will each exert a force of
magnitude (20 N/m)x on the mass in the direction opposite to
the displacement. Hence, the total restoring force will be

F = -(20 N/m)x - (20 N/m)x = -(40 N/m)x

Comparison with F = -kx tells us that the system has a spring
constant of k = 40 N/m. Consequently,

(b) When the mass is displaced a distance y downward, each
spring is stretched the same distance y. The net restoring force
on the mass is then

F = -(20 N/m)y - (20 N/m)y = -(40 N/m)y

Comparison with F = -ky shows k to be 40 N/m, the same as in (a).
The period in this case is also 0.54 s.

11.10 [III] In an old gasoline engine, a piston undergoes vertical SHM with
an amplitude of 7.0 cm. A washer rests on top of the piston. As the
motor speed is slowly increased, at what frequency will the washer no
longer stay in contact with the piston?

The situation we are looking for is when the maximum
downward acceleration of the washer equals that of free fall,
namely, g. If the piston accelerates down faster than that, the
washer will lose contact.

In SHM, the acceleration is given in terms of the displacement
and the period as

(To see this, notice that a = −F/m. But from , we have
k = 4π2m/T2, which then gives the above expression for a.) With



the upward direction chosen as positive, the largest downward
(most negative) acceleration occurs for x = +x0 = 0.070 m; it is

The washer will separate from the piston when a0 first becomes
equal to g. Therefore, the critical period for the SHM, Tc, is given
by

This corresponds to the frequency fc = 1/Tc = 1.9 Hz. The washer
will separate from the piston if the piston’s frequency exceeds 1.9
cycles/s.

11.11 [III] A 20-kg electric motor is mounted on four vertical springs, each
having an elastic constant of 30 N/cm. Find the period with which the
motor vibrates vertically.

As in Problem 11.9, we may replace the springs by an equivalent
single spring. Its force constant will be 4(3000 N/m) or 12 000
N/m. Then

11.12 [III] Mercury is poured into a glass U-tube. Normally, the mercury
stands at equal heights in the two columns, but when disturbed, it
oscillates back and forth from arm to arm. (See Fig. 11-7.) One
centimeter of the mercury column has a mass of 15.0 g. Suppose the
column is displaced as shown and released, and it vibrates back and
forth without friction. Compute (a) the effective spring constant of the
motion and (b) its period of oscillation.

(a) When the mercury is displaced x m from equilibrium as
shown, the restoring force is the weight of the unbalanced
column of length 2x. The mercury has a mass of 1.50



kilograms per meter. The mass of the column is therefore (2x)
(1.50 kg), and so its weight is mg = (29.4 kg · m/s2)(x).
Therefore, the restoring force is

F = (29.4 N/m)(x)

which is of the form F = kx with k = 29.4 N/m. This is the
effective elastic constant of the system.

(b) The period of vibration is then

where M is the total mass of mercury in the U-tube—that is,
the total mass being moved by the restoring force.

Fig. 11-7

Fig. 11-8



11.13 [II]  Compute the acceleration due to gravity at a place where a
simple pendulum 150.3 cm long swings through 100.0 cycles in 246.7
s.

11.14 [II]  The 200-g object in Fig. 11-8 is pushed to the left, compressing
the spring 15 cm from its equilibrium position. The system is then
released, and the object shoots to the right. How fast will the object be
moving as it sails away? Assume the mass of the spring to be very
small and friction to be negligible.

When the spring is compressed, energy is stored in it. That
energy is , where x0 = 0.15 m. After release, this energy will
be transferred to the object as KE. When the spring passes
through its equilibrium position, all the PEe will be changed to
KE. (Since the mass of the spring is small, its KE can be
ignored.) Therefore,

from which it follows that υ = 6.7 m/s.

11.15 [II]  Suppose that, in Fig. 11-8, the 200-g object initially moves to the
left at a speed of 8.0 m/s. It strikes the spring and becomes attached to
it. (a) How far does it compress the spring? (b) The system then
oscillates back and forth; what is the amplitude of that oscillation?
Ignore friction and the small mass of the spring.

(a) Because the spring can be considered massless, all the KE of
the object will go into compressing the spring. We can
therefore write



where υ0 = 8.0 m/s and x0 is the maximum compression of the
spring. For m = 0.200 kg and k = 400 N/m, the above relation
gives x0 = 0.179 m = 0.18 m.

(b) The spring compresses 0.179 m from its equilibrium position.
At that point, all the energy of the spring–object system is
PEe. As the spring pushes the object back toward the right, it
moves through the equilibrium position. The object stops at a
point to the right of the equilibrium position where the energy
is again all PEe. Since no losses occurred, the same energy
must be stored in the stretched spring as in the compressed
spring. Therefore, it will be stretched x0 = 0.18 m from the
equilibrium point. The amplitude of oscillation is therefore
0.18 m.

11.16 [II] In Fig. 11-9, the 2.0-kg body is released when the spring is
unstretched. Neglecting the inertia and friction of the pulley and
the mass of the spring and string, find (a) the amplitude of the
resulting oscillation and (b) its center or equilibrium point.

Fig. 11-9

(a) Suppose the 2.0-kg body falls a distance h before stopping.
At that time, the PEG it lost (mgh) will be stored in the spring,
so that



The body will stop in its upward motion when the energy of
the system is all recovered as PEG. Therefore, it will rise 0.13
m above its lowest position. The amplitude is thus 0.13/2 =
0.065 m.

(b) The center point of the motion is a distance of 0.065 m below
the point from which the body was released—that is, a
distance equal to half the total travel below the highest point.

11.17 [II] A 3.0-g particle at the end of a spring moves according to the
equation y = 0.75 sin 63t, where y is in centimeters and t is in
seconds. Find the amplitude and frequency of its motion, its
position at t = 0.020 s, and the spring constant.

The equation of motion is y = y0 sin 2πft. By comparison, we see
that the amplitude is y0 = 0.75 cm. Also,

2πf = 63 s−1    from which    ƒ = 10 Hz

(Note that the argument of the sine must be dimensionless;
because t is in seconds, 2πf must have the unit 1/s.)

When t = 0.020 s, we have

y = 0.75 sin (1.26 rad) = (0.75)(0.952) = 0.71 cm

Notice that the argument of the sine is in radians, not degrees.

SUPPLEMENTARY PROBLEMS



11.18 [I]  A small metal sphere weighing 10.0 N is hung from a vertical
spring, which comes to rest after stretching 2.0 cm. Determine the
spring constant.

11.19 [I]  How much energy is stored in a spring with an elastic constant of
1000 N/m when it is compressed 10 cm?

11.20 [I]  Given that a spring oscillates at a frequency of 4.40 cycles per
second, how long will it take to make 200 oscillations?

11.21 [I]  If a reed is oscillating in SHM such that each cycle takes 1.00 ms,
what is the corresponding frequency?

11.22 [I]  A stretched wire vibrates in SHM such that 1000 cycles takes 2.00
s. Determine its oscillatory frequency and period.

11.23 [I]  A horizontal spring is set up like the one in Fig. 11-3. It has an
elastic constant of 50.0 N/m. A 1.00-kg mass, sitting on a
frictionless horizontal surface, is attached to the end of the spring.
The mass is displaced 10.0 cm to the right and released,
whereupon it oscillates in SHM. Determine its acceleration
(magnitude and direction) immediately after release. [Hint: x = x0
= 10.0 cm.]

11.24 [I]  A horizontal spring is set up like the one in Fig. 11-3. It has an
elastic constant of 80.0 N/m. A 2.00-kg mass, sitting on a
frictionless horizontal surface, is attached to the end of the spring.
The mass is displaced 20.0 cm to the right and released,
whereupon it oscillates in SHM. Determine its acceleration
(magnitude and direction) and its velocity (magnitude and
direction) at its equilibrium position. [Hint: x = 0.]

11.25 [I]  A horizontal spring is set up like the one in Fig. 11-3. It has an
elastic constant of 100.0 N/m. A 2.50-kg mass, sitting on a
frictionless horizontal surface, is attached to the end of the spring.
The mass is displaced 25.0 cm to the right and released,
whereupon it oscillates in SHM. Determine its acceleration
(magnitude and direction) and its velocity (magnitude and



direction) when it first reaches a location 20.0 cm to the left of the
equilibrium position. [Hint: x = –20.0 cm.]

11.26 [I]  For the system shown in Fig. 11-3, write an expression for the
maximum speed reached by the oscillating mass. And check the
units for your answer.

11.27 [I]  What is the value of the maximum speed in Problem 11.25, and
where in the cycle does it occur?

11.28 [I]  What is the value of the temporal period of a simple pendulum 9.81
m long?

11.29 [I]  Assume a simple pendulum swings frictionlessly. Given that it
attains a maximum speed of 4.00 m/s, to what maximum height
will the bob rise vertically above the point where its acceleration is
zero?

11.30 [I]  A pendulum is timed as it swings back and forth. The clock is
started when the bob is at the left end of its swing. When the bob
returns to the left end for the 90th return, the clock reads 60.0 s.
What is the period of vibration? The frequency?

11.31 [II]  A 300-g mass at the end of a Hookean spring vibrates up and
down in such a way that it is 2.0 cm above the tabletop at its
lowest point and 16 cm above at its highest point. Its period is 4.0
s. Determine (a) the amplitude of vibration, (b) the spring
constant, (c) the speed and acceleration of the mass when it is 9
cm above the tabletop, (d) the speed and acceleration of the mass
when it is 12 cm above the tabletop.

11.32 [II]  A coiled Hookean spring is stretched 10 cm when a 1.5-kg body
is hung from it. Suppose instead that a 4.0-kg mass hangs from
the spring and is set into vibration with an amplitude of 12 cm.
Find (a) the force constant of the spring, (b) the maximum
restoring force acting on the vibrating body, (c) the period of
vibration, (d) the maximum speed and the maximum acceleration
of the vibrating object, and (e) the speed and acceleration when



the displacement is 9 cm.

11.33 [II]  A 2.5-kg body undergoes SHM and makes exactly 3 vibrations
each second. Compute the acceleration and the restoring force
acting on the body when its displacement from the equilibrium
position is 5.0 cm.

11.34 [II]  A 300-g object attached to the end of a spring oscillates with an
amplitude of 7.0 cm and a frequency of 1.80 Hz. (a) Find its
maximum speed and maximum acceleration. (b) What is its speed
when it is 3.0 cm from its equilibrium position?

11.35 [II]  A Hookean spring is stretched 20 cm when a massive object is
hung from it. What is the frequency of vibration of the object if
pulled down a little and released?

11.36 [II]  A 300-g body fixed at the end of a spring executes SHM with a
period of 2.4 s. Find the period of oscillation when the body is
replaced by a 133-g mass on the same spring.

11.37 [II]  With a 50-g mass at its end, a spring undergoes SHM with a
frequency of 0.70 Hz. How much work is done in stretching the
spring 15 cm from its unstretched length? How much energy is
then stored in the spring?

11.38 [II]  In a situation similar to that shown in Fig. 11-7, a mass is pressed
back against a light spring for which k = 400 N/m. The mass
compresses the spring 8.0 cm and is then released. After sliding
55 cm along the flat table from the point of release, the mass
uniformly comes to rest. How large a friction force opposed its
motion?

11.39 [II]  A 500-g object is attached to the end of an initially unstretched
vertical spring for which k = 30 N/m. The object is then released,
so that it falls and stretches the spring. How far will it fall before
stopping? [Hint: The PEG lost by the falling object must appear
as PEe.]



11.40 [II]  A popgun uses a spring for which k = 20 N/cm. When cocked,
the spring is compressed 3.0 cm. How high can the gun shoot a
5.0-g projectile?

11.41 [II]  A cubical block on an air table vibrates horizontally in SHM with
an amplitude of 8.0 cm and a frequency of 1.50 Hz. If a smaller
block sitting on it is not to slide, what is the minimum value that
the coefficient of static friction between the two blocks can have?

11.42 [II]  Find the frequency of vibration on Mars for a simple pendulum
that is 50 cm long. Objects weigh 0.40 as much on Mars as on the
Earth.

11.43 [II]  A “seconds pendulum” beats seconds; that is, it takes 1 s for half
a cycle. (a) What is the length of a simple “seconds pendulum” at
a place where g = 9.80 m/s2? (b) What is the length there of a
pendulum for which T = 1.00 s?

11.44 [II]  Show that the natural period of vertical oscillation of a mass
hung on a Hookean spring is the same as the period of a simple
pendulum whose length is equal to the elongation the mass
causes when hung on the spring.

11.45 [II]  A particle that is at the origin of coordinates at exactly t = 0
vibrates about the origin along the y-axis with a frequency of 20
Hz and an amplitude of 3.0 cm. Write out its equation of motion
in centimeters.

11.46 [II]  A particle vibrates according to the equation x = 20 cos 16t,
where x is in centimeters. Find its amplitude, frequency, and
position at exactly t = 0 s.

11.47 [II]  A particle oscillates according to the equation y = 5.0 cos23t,
where y is in centimeters. Find its frequency of oscillation and its
position at t = 0.15 s.



ANSWERS TO SUPPLEMENTARY PROBLEMS

11.18 [I]    5.0 × 102 N/m

11.19 [I]    5.0 J

11.20 [I]    45.5 s

11.21 [I]    1.00 kHz

11.22 [I]    f = 500 Hz; T = 2.00 ms

11.23 [I]    5.00 m/s2 to the left

11.24 [I]    a = 0; υ = 1.26 m/s to the left

11.25 [II]  a = 8.00 m/s2 to the right; υ = 0.949 m/s to the left

11.26 [I]    

11.27 [I]    At x = 0, υmax = 1.58 m/s.

11.28 [I]    T = 2π s

11.29 [I]    0.815 m

11.30 [I]    0.667 s, 1.50 Hz

11.31 [II]  (a) 7.0 cm; (b) 0.74 N/m; (c) 0.11 m/s; zero; (d) 0.099 m/s, 0.074
m/s2

11.32 [II]  (a) 0.15 kN/m; (b) 18 N; (c) 1.0 s; (d) 0.73 m/s, 4.4 m/s2; (e) 0.48
m/s, 3.3 m/s2

11.33 [II]  18 m/s2, 44 N

11.34 [II]  (a) 0.79 m/s, 8.9 m/s2; (b) 0.72 m/s



11.35 [II]  1.1 Hz

11.36 [II]  1.6 s

11.37 [II]  0.011 J, 0.011 J

11.38 [II]  2.3 N

11.39 [II]  33 cm

11.40 [II]  18 m

11.41 [II]  0.72

11.42 [II]  0.45 Hz

11.43 [II]  (a) 99.3 cm; (b) 24.8 cm

11.45 [II]  y = 3.0 sin125.6t

11.46 [II]  20 cm, 2.6 Hz, x = 20 cm

11.47 [II]  3.7 Hz, -4.8 cm



Density and Elasticity

The Mass Density (ρ) of a body is its mass per unit volume:

The SI unit for mass density is kg/m3, although g/cm3 is also used: 1000
kg/m3 = 1 g/cm3. The density of water is close to 1000 kg/m3. Be careful
here; using 1 for the density of water in a problem involving SI units is a
common error (see Table 12-1).

The Specific Gravity (sp gr) of a substance is the ratio of the density of the
substance to the density of some standard substance. The standard is usually
water (at 4 °C) for liquids and solids, while for gases, it is usually air.

Since sp gr is a dimensionless ratio, it has the same value for all systems of
units, which is why it was introduced centuries ago.

Elasticity is the property by which a body returns to its original size and
shape when the forces that deformed it are removed. An elastic body is said
to be Hookean in that it obeys Hooke’s Law.

The Stress (σ) experienced within a solid is the magnitude of the force
acting (F), divided by the area (A) over which it acts:



The SI unit of stress is the pascal (Pa), where 1 Pa = 1 N/m2. Thus, if a cane
supports a load, the stress at any point within the cane is the load divided by
the cross-sectional area at that point; the narrowest regions experience the
greatest stress.

Strain (ε) is the fractional deformation resulting from a stress. It is
measured as the ratio of the change in some dimension of a body (often its
length) to the original dimension in which the change occurred.

TABLE 12-1
Densities of Some Materials

Thus, the normal strain under an axial load is the change in length (ΔL) over
the original length L0:

Strain has no units because it is a ratio of like quantities.

The Elastic Limit of a body is the smallest stress that will produce a



permanent distortion in the body. When a stress in excess of this limit is
applied, the body will not return exactly to its original state after the stress is
removed.

Young’s Modulus (Y), or the modulus of elasticity, is defined as

The modulus has the same units as stress, which are N/m2 or Pa. A large
modulus means that a large stress is required to produce a given strain—the
object is rigid.

Unlike the constant k in Hooke’s Law, the value of Y depends only on the
material of the wire or rod, and not on its dimensions or configuration.
Consequently, Young’s modulus is an important basic measure of the
mechanical behavior of materials (see Table 12-2).

TABLE 12-2
Approximate Values of Young’s Modulus for Various Solids



The Bulk Modulus (B) describes the volume elasticity of a material.
Suppose that a uniformly distributed compressive force acts on the surface
of an object and is directed perpendicular to the surface at all points. Then if

 is the magnitude of the force acting on and perpendicular to an area A, the
pressure P on A is defined as

The SI unit for pressure is Pa. Note that pressure is a scalar quantity.
Suppose that the pressure on an object of original volume V0 is increased



by an amount ΔP. That pressure increase causes a volume change ΔV, where
ΔV will be negative. We then define

The minus sign is used so as to cancel the negative numerical value of ΔV
and thereby make B a positive number. The bulk modulus has the units of
pressure.

The reciprocal of the bulk modulus is called the compressibility K of the
substance.

The Shear Modulus (S) describes the shape elasticity of a material.
Suppose, as shown in Fig. 12-1, that equal and opposite tangential forces F
act on a rectangular block. These shearing forces distort the block as
indicated, but its volume remains unchanged. We define

Since ΔL is usually very small, the ratio ΔL/L0 is equal approximately to the
shear angle γ in radians. In that case,



Fig. 12-1

PROBLEM SOLVING GUIDE

Do not round off numbers in the middle of a calculation. Make sure you
know how to calculate the volumes of cubes, spheres, and cylinders.
Wherever possible, check that your answers are realistic. Remember that 1.0
cm3 = 1.0 × 10-6 m3. A common error is to take the density of water to be
1.0 when in SI units it is 1.0 × 103 kg/m3. Be careful with units. In Table 12-
2, the values are given in GPa where 1 GPa = 1 × 109 Pa.

SOLVED PROBLEMS

12.1 [I]    Find the density and specific gravity of gasoline if 51 g occupies 75
cm3. Make sure you know how to convert cubic centimeters to
cubic meters: 1.0m3 = 1.0 × 106 cm3.

12.2 [I]    What volume does 300 g of mercury occupy? The density of
mercury is 13 600 .

From ρ = m/v,



12.3 [I]    The specific gravity of cast iron is 7.20. Find its density and the
mass of 60.0 cm3 of it.

Make use of

From the first equation,

Density of iron = (sp gr)(Density of water) = (7.20)(1000 kg/m3) = 7200

and so

Mass of 60.0 cm3 = ρV = (7200 kg/m3)(60.0 × 10-6 m3) =0.432 kg

12.4 [I]    The mass of a calibrated flask is 25.0 g when empty, 75.0 g when
filled with water, and 88.0 g when filled with glycerin. Find the
specific gravity of glycerin.

From the data, the mass of the glycerin in the flask is 63.0 g, while
an equal volume of water has a mass of 50.0 g. Then

12.5 [I]    A calibrated flask has a mass of 30.0 g when empty, 81.0 g when
filled with water, and 68.0 g when filled with an oil. Find the
density of the oil.

First find the volume of the flask from ρ = m/v using the water
data:



12.6 [I]    A solid cube of aluminum is 2.00 cm on each edge. The density of
aluminum is 2700 kg/m3. Find the mass of the cube.

Mass of cube = ρV = (2700 kg/m3)(0.0200 m3)= 0.0216 kg=21.6 g

12.7 [I]   What is the mass of 1 liter (1000 cm3) of cottonseed oil of density
926 kg/m3? How much does it weigh?

12.8 [I]    An electrolytic tin-plating process gives a tin coating that is 7.50 ×
10-5 thick. How large an area can be coated with 0.500 kg of tin?
The density of tin is 7300 kg/m3.

The volume of 0.500 kg of tin is given by ρ = m/V to be

The volume of a film with area A and thickness d is V = Ad.
Solving for A, we find

as the area that can be covered.

12.9 [I]    A thin sheet of gold foil has an area of 3.12 cm2 and a mass of
6.50 mg. How thick is the sheet? The density of gold is 19 300
kg/m3.



One milligram is 10-6 kg, so the mass of the sheet is 6.50 × 10-6

kg. Its volume is

V = (area) × (thickness) = (3.12 × 10-4 m2)(d)

where d is the thickness of the sheet. We equate this expression for
the volume to m/ρto get

from which d = 1.08 × 10-6 m = 1.08 μm.

12.10 [I] The mass of a liter of milk is 1.032 kg. The butterfat that it contains
has a density of 865 kg/m3 when pure, and it constitutes exactly 4
percent of the milk by volume. What is the density of the fat-free
skimmed milk?

12.11 [II] A metal wire 75.0 cm long and 0.130 cm in diameter stretches
0.035 0 cm when a load of 8.00 kg is hung on its end. Find the
stress, the strain, and the Young’s modulus for the material of the
wire.

12.12 [II] A solid cylindrical steel column is 4.0 m long and 9.0 cm in
diameter. What will be its decrease in length when carrying a load
of 80 000 kg? Y=1.9 × 1011 Pa.

First find the



Cross-sectional area of column = πr2 = π(0.045 m)2 = 6.36 × 10-3 m2

Then, from Y=(F/A)/(ΔL/L0),

12.13 [I] Atmospheric pressure is about 1.01 × 105 Pa. How large a force
does the atmosphere exert on a 2.0-cm2 area on the top of your
head?

Because P = F/A, where F is perpendicular to A, we have F = PA.
Assuming that 2.0 cm2 of your head is flat (nearly correct) and
that the force due to the atmosphere is perpendicular to the surface
(as it is),

F = PA = (1.01 × 105 N/m2)(2.0 × 10-4 m2)= 20 N

12.14 [I] A 60-kg woman stands on a light, cubical box that is 5.0 cm on each
edge. The box sits on the floor. What pressure does the box exert
on the floor?

12.15 [I] The bulk modulus of water is 2.1 GPa. Compute the volume
contraction of 100 mL of water when subjected to a pressure of
1.5 MPa.

From B = ΔP/(ΔV/V0),

12.16 [II] A box-shaped piece of gelatin dessert has a top area of 15 cm2 and
a height of 3.0 cm. When a shearing force of 0.50 N is applied to
the upper surface, the upper surface displaces 4.0 mm relative to
the bottom surface. What are the shearing stress, the shearing



strain, and the shear modulus for the gelatin?

12.17 [III] A 15-kg ball of radius 4.0 cm is suspended from a point 2.94 m
above the floor by an iron wire of unstretched length 2.85 m. The
diameter of the wire is 0.090 cm, and its Young’s modulus is 180
GPa. If the ball is set swinging so that its center passes through the
lowest point at 5.0 m/s, by how much does the bottom of the ball clear
the floor? Discuss any approximations that you make.

Call the tension in the wire FT when the ball is swinging through
the lowest point. Since FT must supply the centripetal force as
well as balance the weight,

all in proper SI units. This is complicated, because r is the
distance from the pivot to the center of the ball when the wire is
stretched, and so it is r0 + Δr, where r0, the unstretched length of
the pendulum, is

r0 = 2.85 m + 0.040 m = 2.89 m

and where Δr is as yet unknown. However, the unstretched
distance from the pivot to the bottom of the ball is 2.85 m +
0.080 m = 2.93 m, and so the maximum possible value for Δr is

2.94 m - 2.93 m = 0.01 m

We will therefore incur no more than a 1/3 percent error in r by
using r = r0 = 2.89 m. This gives FT = 277 N. Under this tension,



the wire stretches by

Hence, the ball misses by

2.94 m - (2.85 + 0.006 9 + 0.080) m = 0.003 1 m = 3.1 mm

To check the approximation we have made, we could use r =
2.90 m, its maximum possible value. Then ∆L = 6.9 mm,
showing that the approximation has caused a negligible error.

12.18 [III] A vertical wire 5.0 m long and of 0.008 cm2 cross-sectional area
has a modulus Y = 200 GPa. A 2.0-kg object is fastened to its end and
stretches the wire elastically. If the object is now pulled down a little
and released, the object undergoes vertical SHM. Find the period of
its vibration.

The force constant of the wire acting as a vertical spring is given
by k = F/ΔL, where ∆L is the deformation produced by the force
(weight) F. But, from F/A=Y(ΔL/L0),

SUPPLEMENTARY PROBLEMS

12.19 [I]   The moon is approximately a sphere with a mean radius of 1.74 ×
106 m. Determine its approximate volume and its mass. [Hint:
Use Table 12-1.]



12.20 [I]   A circular disk of marble has a diameter of 80 cm and a thickness
of 2.0 cm. Determine its volume, mass, and weight. [Hint: Use
Table 12-1 and convert to meters first.]

12.21 [I]    What is the mass of a cubic block of ice, 100 cm on each side?
How much does it weigh, in both newtons and pounds? [Hint:
Use Table 12-1 and convert to meters first.]

12.22 [I]    A cylindrical container 1.2 m high with a radius of 0.50 m is
filled with olive oil. Compute the volume and the mass of the oil.
How much does the oil weigh? [Hint: Use Table 12-1.]

12.23 [I]    What is the value of the specific gravity of ether?

12.24 [I]    Find the density and specific gravity of ethyl alcohol if 63.3 g
occupies 80.0 mL.

12.25 [I]    Determine the volume of 200 g of carbon tetrachloride, for
which sp gr = 1.60.

12.26 [I]  The density of aluminum is 2.70 g/cm3. What volume does 2.00
kg occupy?

12.27 [I]  Determine the mass of an aluminum cube that is 5.00 cm on each
edge. The density of aluminum is 2700 kg/m2.

12.28 [I]    A drum holds 200 kg of water or 132 kg of gasoline. Determine
for the gasoline (a) its specific gravity and (b) ρ in kg/m3.

12.29 [I]  Air has a density of 1.29 kg/m3 under standard conditions. What
is the mass of air in a room with dimensions 10.0 m × 8.00 m ×
3.00 m?

12.30 [I]  What is the density of the material in the nucleus of the hydrogen
atom? The nucleus can be considered to be a sphere of radius 1.2
× 10-15 m and its mass is 1.67 × 10-27 kg. The volume of a sphere
is (4/3)πr3.



12.31 [I]  To determine the inner radius of a uniform capillary tube, the tube
is filled with mercury. A column of mercury 2.375 cm long is
found to have a mass of 0.24 g. What is the inner radius r of the
tube? The density of mercury is 13 600 kg/m3, and the volume of
a right circular cylinder is πr2h.

12.32 [I]  Battery acid has a specific gravity of 1.285 and is 38.0 percent
sulfuric acid by weight. What mass of sulfuric acid is contained
in a liter of battery acid?

12.33 [II]  A thin, semitransparent film of gold (ρ = 19 300 kg/m3) has an
area of 14.5 cm2 and a mass of 1.93 mg. (a) What is the volume
of 1.93 mg of gold? (b) What is the thickness of the film in
angstroms, where 1 Å = 10-10m? (c) Gold atoms have a diameter
of about 5 Å. How many atoms thick is the film?

12.34 [II]  In an unhealthy, dusty cement mill, there were 2.6 × 109 dust
particles (sp gr = 3.0) per cubic meter of air. Assuming the
particles to be spheres of 2.0 µm diameter, calculate the mass of
dust (a) in a 20 m × 15 m × 8.0 m room and (b) inhaled in each
average breath of 400-cm3 volume.

12.35 [I]    A gold wire fixed to a ceiling hook supports a load and
experiences a strain of 5.0 × 10-3. Determine the stress in the
wire. [Hint: Use Table 12-2.]

12.36 [I]    A bronze rod fixed to a ceiling supports a load of 40.0 KN (17.8
× 104 lb). The rod is 30.0 m long and has a square cross-section
of 1.00 cm by 1.00 cm. By how much has the rod been stretched
by the load? [Hint: Use Table 12-2.]

12.37 [II] An iron rod 4.00 m long and 0.500 cm2 in cross section mounted
vertically stretches 1.00 mm when a mass of 225 kg is hung from
its lower end. Compute Young’s modulus for the iron.

12.38 [II]  A load of 50 kg is applied to the lower end of a vertical steel rod
80 cm long and 0.60 cm in diameter. How much will the rod



stretch? Y = 190 GPa for steel.

12.39 [II] A horizontal rectangular platform is suspended by four identical
wires, one at each of its corners. The wires are 3.0 m long and
have a diameter of 2.0 mm. Young’s modulus for the material of
the wires is 180 GPa. How far will the platform drop (due to
elongation of the wires) if a 50-kg load is placed at the center of
the platform?

12.40 [II]  Determine the fractional change in volume as the pressure of the
atmosphere (1 × 105 Pa) around a metal block is reduced to zero
by placing the block in vacuum. The bulk modulus for the metal
is 125 GPa.

12.41 [II]  Compute the volume change of a solid copper cube, 40 mm on
each edge, when subjected to a pressure of 20 MPa. The bulk
modulus for copper is 125 GPa.

12.42 [II]  The compressibility of water is 5.0 × 10-10 m2/N. Find the
decrease in volume of 100 mL of water when subjected to a
pressure of 15 MPa.

12.43 [II]  Two parallel oppositely directed forces, each 4000 N, are applied
tangentially to the upper and lower faces of a cubical metal block
25 cm on a side. Find the angle of shear and the displacement of
the upper surface relative to the lower surface. The shear modulus
for the metal is 80 GPa.

12.44 [II]  A 60-kg motor sits on four cylindrical rubber blocks. Each
cylinder has a height of 3.0 cm and a cross-sectional area of 15
cm2. The shear modulus for this rubber is 2.0 MPa. (a) If a
sideways force of 300 N is applied to the motor, how far will it
move sideways? (b) With what frequency will the motor vibrate
back and forth sideways if disturbed?



ANSWERS TO SUPPLEMENTARY PROBLEMS

12.19 [I]    2.21 × 1019 m3; 7.37 × 1022 kg

12.20 [I]    0.010 m3; 27 kg; 0.27 kN

12.21 [I]    9.3 × 102 kg; 2.1 × 103 lb; 9.1 × 103 N

12.22 [I]    0.94 m3; 8.7 × 102 kg; 8.5 kN

12.23 [I]    0.736

12.24 [I]    791 kg/m3, 0.791

12.25 [I]    125 mL

12.26 [I]    740 cm3

12.27 [I]    0.338 kg

12.28 [I]    (a) 0.660; (b) 660 kg/m3

12.29 [I]    310 kg

12.30 [I]    2.3 × 1017 kg/m3

12.31 [I]    0.49 mm

12.32 [I]    488 g

12.33 [II]  (a) 1.00 × 10-10 m3; (b) 690 Å; (c) 138 atoms thick

12.34 [II]  (a) 78 g; (b) 13 µg

12.35 [I]    4.0 × 108 N/m2

12.36 [I]    0.100 m



12.37 [II]  176 GPa

12.38 [II]  73 µm

12.39 [II]  0.65 mm

12.40 [II]  8 × 10-7

12.41 [II]  -10 mm3

12.42 [II]  0.75 mL

12.43 [II]  8.0 × 10-7 rad, 2.0 × 10-7 m

12.44 [II]  (a) 0.075 cm; (b) 13 Hz



Fluids at Rest

The Average Pressure on a surface of area A is defined as the force acting
on the area divided by the area, where it is stipulated that the force must be
perpendicular (normal) to the area:

Recall that the SI unit for pressure is the pascal (Pa), and 1 Pa = 1 N/m2.

Standard Atmospheric Pressure (PA) is 1.01 × 105 Pa, and this is
equivalent to 14.7 lb/in.2. Other units of pressure are

The Hydrostatic Pressure (P) due to a column of fluid of height h and
mass density ρ is

Hydrostatic pressure arises from the weight of the column (see Fig. 13-1,
which shows a postage stamp submerged a distance h beneath the surface).



Fig. 13-1

Gauge Pressure (PG) is the pressure read by a measuring device that is set
at zero when the system is open to the atmosphere. The pressure in an
automobile tire, say 30 lb/in.2, is gauge pressure—it ignores atmospheric
pressure (PA). Thus absolute pressure (P) is

Pascal’s Principle: When the pressure on any part of a confined fluid
(liquid or gas) is changed, the pressure on every other part of the fluid is
also changed by the same amount. Study Problem 13.8.

Archimedes’ Principle: A body wholly or partly immersed in a fluid is
buoyed up by a force equal to the weight of the fluid it displaces. The
buoyant force can be considered to act vertically upward through the center
of gravity of the displaced fluid.

The buoyant force on an object of volume V that is totally immersed in a
fluid of density ρf is ρfVg, and the weight of the object is ρ0Vg, where ρ0 is
the density of the object. Therefore, the net force on the submerged object is



PROBLEM SOLVING GUIDE

Do not round off numbers in the middle of a calculation. A common error is
to use 1.00 as the density of water rather than 1.00 × 103; be careful. All the
solids and liquids have densities usually given in multiples of 103kg/m3.

SOLVED PROBLEMS

13.1 [I]     An 80-kg metal cylinder, 2.0 m long and with each end of area 25
cm2, stands vertically on one end. What pressure does the cylinder
exert on the floor?

13.2 [I]     Atmospheric pressure is about 1.0 × 105 Pa. How large a force
does the still air in a room exert on the inside of a window pane
that is 40 cm × 80 cm?

The atmosphere exerts a force normal to any surface placed in it.
Consequently, the force on the window pane is perpendicular to
the pane and is given by

F = PA = (1.0 × 105 N/m2)(0.40 × 0.80 m2) = 3.2 × 104 N

Of course, a nearly equal force due to the atmosphere on the
outside keeps the window from breaking.

13.3 [I]     Find the pressure due to the fluid at a depth of 76 cm in still (a)
water (ρw = 1.00 g/cm3) and (b) mercury (ρ = 13.6 g/cm3).

(a) P = ρwgh = (1000 kg/m3)(9.81 m/s2)(0.76 m) = 7450 N/m2 =
7.5 kPa

(b) P = ρgh = (13 600 kg)(9.81 m/s2)(0.76 m) = 1.01 × 105 N/m2 ≈
1.0 atm



13.4 [I]     When a submarine dives to a depth of 120 m, to how large a total
pressure is its exterior surface subjected? The density of seawater
is about 1.03 g/cm3.

13.5 [I]     How high would water rise in the essentially open pipes of a
building if the water pressure gauge shows the pressure at the
ground floor to be 270 kPa (about 40 lb/in2.)?

Water pressure gauges read the excess pressure just due to the
water, that is, the difference between the absolute pressure in the
water and the pressure of the atmosphere. The water pressure at
the bottom of the highest column that can be supported is 270 kPa.
Therefore, P = ρwph gives

13.6 [I]     A reservoir dam holds an 8.00-km2 lake behind it. Just behind the
dam, the lake is 12.0 m deep. What is the water pressure (a) at the
base of the dam and (b) at a point 3.0 m down from the lake’s
surface?

The area of the lake behind the dam has no effect on the pressure
against the dam. At any point, P = ρwgh.

(a) P = (1000 kg/m3)(9.81 m/s2)(12.0 m) = 118 kPa
(b) P = (1000 kg/m3)(9.81 m/s2)(3.0 m) = 29 kPa

13.7 [II]  A mass (or load) acting downward on a piston confines a fluid of
density ρ in a closed container, as shown in Fig. 13-2. The
combined weight of the piston and load on the right is 200 N, and
the cross-sectional area of the piston is A = 8.0 cm2. Find the total
pressure at point-B if the fluid is mercury and h = 25 cm (ρHg = 13
600 kg/m3). What would an ordinary pressure gauge read at B?



Fig. 13-2

Recall what Pascal’s principle tells us about the pressure applied
to the fluid by the piston and atmosphere: This added pressure is
applied at all points within the fluid. Therefore, the total pressure
at B is composed of three parts:

In this case, the pressure of the fluid itself is relatively small. We
have

Total pressure at B = 3.8 × 105 Pa

The gauge pressure does not in clude atmospheric pressure.
Therefore,

Gauge pressure at B = 2.8 × 105 Pa

13.8 [I]     In a hydraulic press such as the one shown in Fig. 13-3, the large
piston has cross-sectional area A1 = 200 cm2 and the small piston
has cross-sectional area A2 = 5.0 cm2. If a force of 250 N is
applied to the small piston, find the force F1 on the large piston.



Fig. 13-3

By Pascal’s principle,

Note that atmospheric pressure acting on both pistons cancels out
of the calculation.

13.9 [II]  For the system shown in Fig. 13-4, the cylinder on the left, at L, has
a mass of 600 kg and a crosssectional area of 800 cm2. The piston
on the right, at S, has a cross-sectional area of 25 cm2 and a
negligible weight. If the apparatus is filled with oil (ρ = 0.78
g/cm3), find the force F required to hold the system in equilibrium
as shown.

Fig. 13-4



The pressures at points H1 and H2 are equal because they are at the
same level in a single connected fluid. Therefore,

from which F = 31 N.

13.10 [I]  A barrel will rupture when the gauge pressure within it reaches 350
kPa. It is attached to the lower end of a vertical pipe, with the pipe
and barrel filled with oil (ρ = 890 kg/m3). How long can the pipe
be if the barrel is not to rupture?

From P = ρgh we have

13.11 [II]  A vertical test tube has 2.0 cm of oil (ρ = 0.80 g/cm3) floating on
8.0 cm of water. What is the pressure at the bottom of the tube due to
the liquid in it?

13.12 [II]  As shown in Fig. 13-5, a column of water 40 cm high supports a
31-cm column of an unknown liquid. What is the density of that
liquid?

The pressures at point-A due to the two fluids must be equal (or
the one with the higher pressure would push the lower-pressure
fluid away). Therefore,



Fig. 13-5

Fig. 13-6

13.13 [II]  The U-tube device connected to the tank in Fig. 13-6 is called a
manometer. As you can see, the mercury in the tube stands higher in
one side than the other. What is the pressure in the tank if atmospheric
pressure is 76 cm of mercury? The density of mercury is 13.6 g/cm3.

from which P = 95 kPa.

Or, more simply perhaps, we could note that the pressure in the
tank is 5.0 cm of mercury lower than atmospheric. So the
pressure is 71 cm of mercury, which is 94.6 kPa.



13.14 [II]  The mass of a block of aluminum is 25.0 g. (a) What is its
volume? (b) What will be the tension in a string that suspends the
block when the block is totally submerged in water? The density of
aluminum is 2700 kg/m3.

This problem is basically about buoyant force. (a) Because ρ =
m/V, we have

(b) The block displaces 9.26 × 10-6 m3 of water when
submerged, so the buoyant force on it is

The tension in the supporting cord plus the buoyant force must
equal the weight of the block if it is to be in equilibrium (see Fig.
13-7). That is, FT + FB = mg, from which

FT = mg - FB = (0.025 0 kg)(9.81 m/s2) - 0.090 8 N = 0.154 N

13.15 [II]  Using a scale, a piece of alloy has a measured mass of 86 g in air
and 73 g when immersed in water. Find its volume and its density.

The apparent change in measured mass is due to the buoyant
force of the water. Figure 13-7 shows the situation when the
object is in water. From the figure, FB + FT = mg, so

FB = (0.086)(9.81) N - (0.073)(9.81) N = (0.013)(9.81) N

But FB must be equal to the weight of the displaced water.



Fig. 13-7

13.16 [II]   A solid aluminum cylinder with ρ = 2700 kg/m3 has a measured
mass of 67 g in air and 45 g when immersed in turpentine. Determine
the density of turpentine.

The FB acting on the immersed cylinder is

FB = (0.067 - 0.045)(9.81) N = (0.022)(9.81) N

This is also the weight of the displaced turpentine.

This is also the volume of the displaced turpentine. We therefore
have, for the turpentine,



13.17 [II]   A glass stopper has a mass of 2.50 g when measured in air, 1.50
g in water, and 0.70 g in sulfuric acid. What is the density of the acid?
What is its specific gravity?

The FB on the stopper in water is (0.002 50 - 0.001 50)(9.81) N.
This is the weight of the displaced water. Since ρ = m/V, or ρg =
FW/V,

The buoyant force in acid is

[(2.50 - 0.70) × 10-3](9.81) N = (0.001 80)(9.81) N

But this is equal to the weight of displaced acid, mg. Since ρ =
m/V, and since m = 0.001 80 kg and V = 1.00 × 10-6 m3,

Then, for the acid,

Alternative Method

Then, since sp gr of acid = (ρ of acid)/(ρ of water),

ρ of acid = (sp gr of acid)(ρ of water) = (1.8)(1000 kg/m3) = 1.8 × 103 kg/m3

13.18 [II]   The density of ice is 917 kg/m3. What fraction of the volume of
a piece of ice will be above the liquid when floating in fresh water?



The piece of ice will float in the water, since its density is less
than 1000 kg/m3, the density of water. As it does,

FB = Weight of displaced water = Weight of piece of ice

But the weight of the ice is ρicegV, where V is the volume of the
piece. In addition, the weight of the displaced water is ρwgV′,
where V′ is the volume of the displaced water. Substituting into
the above equation

The fraction of the volume that is above water is then

13.19 [II]   A 60-kg rectangular box, open at the top, has base dimensions of
1.0 m by 0.80 m and a depth of 0.50 m. (a) How deep will it sink in
fresh water? (b) What weight FWb of ballast will cause it to sink to a
depth of 30 cm?

(a) Assuming that the box floats,

FB = Weight of displaced water = Weight of box

(1000 kg/m3)(9.81 m/s2)(1.0 m × 0.80 m × y) = (60 kg)(9.81 m/s2)

where y is the depth the box sinks. Solving yields y = 0.075 m.
Because this is smaller than 0.50 m, our assumption is shown to
be correct.

(b) FB = weight of box + weight of ballast

But the FB is equal to the weight of the displaced water.
Therefore, the above equation becomes



(1000 kg/m3)(9.81 m/s2)(1.0 m × 0.80 m × 0.30 m) = (60)(9.81) N + FWb

from which FWb = 1760 N = 1.8 kN. The ballast must have a
mass of (1760/9.81) kg = 180 kg.

13.20 [III] A foam plastic (ρp = 0.58 g/cm3) is to be used as a life preserver.
What volume of plastic must be used if it is to keep 20 percent (by
volume) of an 80-kg man above water in a lake? The average density
of the man is 1.04 g/cm3.

Keep in mind that a density of 1g/cm3 equals 1000 kg/m3. At
equilibrium

where subscripts m, w, and p refer to man, water, and plastic,
respectively.

But ρmVm = 80 kg and so Vm = (80/1040) m3. Substitution gives

[(1000 - 580) kg/m3]Vp = [(1040 - 800) kg/m3][(80/1040) m3]

from which Vp = 0.044 m3.

13.21 [III] A partly filled beaker of water sits on a scale, and its weight is
2.30 N. When a piece of metal suspended from a thread is totally
immersed in the beaker (but not touching bottom), the scale reads
2.75 N. What is the volume of the metal?

The water exerts an upward buoyant force on the metal.
According to Newton’s Third Law of action and reaction, the
metal exerts an equal downward force on the water. It is this
force that increases the scale reading from 2.30 N to 2.75 N.
Hence the buoyant force is 2.75 - 2.30 = 0.45 N. Then, because



FB = weight of displaced water = ρwgV = (1000 kg/m3)(9.81 m/s2)(V)

we have the volume of the displaced water, and of the piece of
metal, namely,

13.22 [II]  A piece of pure gold (ρ = 19.3 g/cm3) is suspected to have a
hollow center. It has a mass of 38.25 g when measured in air and
36.22 g in water. What is the volume of the central hole in the
gold?

Remember that you go from a density in g/cm3 to kg/m3 by
multiplying by 1000. From ρ = m/V,

13.23 [III] A wooden cylinder has a mass m and a base area A. It floats in
water with its axis vertical. Show that the cylinder undergoes SHM if
given a small vertical displacement. Find the frequency of its motion.

When the cylinder is pushed down a distance y, it displaces an
additional volume Ay of water. Because this additional displaced
volume has mass Ayρw, an additional buoyant force Ayρwg acts on
the cylinder, where ρw is the density of water. This is an
unbalanced force on the cylinder and is a restoring force. In
addition, the force is proportional to the displacement and so is a
Hooke’s Law force. Therefore, the cylinder will undergo SHM,
as described in Chapter 11.

Comparing FB = Aρwgy with Hooke’s Law in the form F = ky,
we see that the elastic constant for the motion is k = Aρwg. This,
acting on the cylinder of mass m, causes it to have a vibrational



frequency of

13.24 [II]  What must be the volume V of a 5.0-kg balloon filled with
helium (ρHe = 0.178 kg/m3) if it is to lift a 30-kg load? Use ρair =
1.29 kg/m3.

The buoyant force, Vρairg, must lift the weight of the balloon, its
load, and the helium within it:

13.25 [III] Find the density ρ of a fluid at a depth h in terms of its density ρ0
at the surface.

If a mass m of fluid has volume V0 at the surface, then it will
have volume V0 −ΔV at a depth h. The density at depth h is then

However, from Chapter 12, the bulk modulus is B = P/(ΔV/V0)
and so ΔV/V0 = P/B. Making this substitution, we obtain

If we assume that ρ is close to ρ0, then the pressure at depth h is
approximately ρ0gh, and so



SUPPLEMENTARY PROBLEMS

13.26 [I]  The sole of a man’s size-10 shoe is around 11.0 in. by 4.00 in.
Determine the gauge pressure under the feet of a 200-lb man
standing upright. Give your answer in both lb/in.2 and Pa. [Hint:
1.00 lb/in2 = 6895 Pa. Check your work using 1.00 in.2 = 6.45 ×
10–4 m2 and 1.00 lb = 4.448 N.]

13.27 [I]  A 60-kg performer balances on a cane. The end of the cane in
contact with the floor has an area of 0.92 cm2. Find the pressure
exerted on the floor by the cane. (Neglect the weight of the cane.)

13.28 [I]  What is the gauge pressure 1.00 m under pure water at around 4.0
°C? [Hint: Use Table 12-1 and Eq. 13.2.]

13.29 [I]  During the Second World War, submarine S51 sank in 90 ft of
water off Block Island. Divers passed cables under its hull. At
what gauge pressure did they work? [Hint: Use Table 12-1 and
1.000 ft = 0.304 8 m.]

13.30 [I]  In 2010 the U.S. Center for Coastal and Ocean Mapping measured
the deepest known point of the Earth’s oceans in the Mariana
Trench. It was 10 994 m (36 070 ft) deep, more than a mile taller
than Mt. Everest. Compute the gauge pressure at that depth
assuming the density of seawater is constant. [Hint: Use Table 12-
1.]

13.31 [I]  A large tank of benzene is open on top. Determine the absolute
pressure 10.0 m down from the surface in the liquid. [Hint: Use
Table 12-1.]

13.32 [I]  A large open rectangular tank 2.00 m by 2.00 m by 11.0 m deep is
filled with ethyl alcohol to a depth of 10.0 m. What is the value of
the net force exerted by the liquid on the bottom of the tank?

13.33 [I]  A certain town receives its water directly from a water tower. If the
top of the water in the tower is 26.0 m above the water faucet in a



house, what should be the water pressure at the faucet? (Neglect
the effects of other water users.)

13.34 [II]  At a height of 10 km (33 000 ft) above sea level, atmospheric
pressure is about 210 mm of mercury. What is the net resultant
normal force on a 600 cm2 window of an airplane flying at this
height? Assume the pressure inside the plane is 760 mm of
mercury. The density of mercury is 13 600 kg.

13.35 [II]  A narrow tube is sealed onto a tank as shown in Fig. 13-8. The
base of the tank has an area of 80 cm2. 
(a) Remembering that pressure is determined by the height of the
column of liquid, find the force on the bottom of the tank due to
oil when the tank and capillary are filled with oil (ρ = 0.72 g/cm3)
to the height h1. (b) Repeat for an oil height of h2.

Fig. 13-8

13.36 [II]  Repeat Problem 13.35, but now find the force on the top wall of
the tank due to the oil.

13.37 [II]  Compute the pressure required for a water supply system that
will raise water 50.0 m vertically.

13.38 [II]  A covered cubic tank 5.00 m by 5.00 m by 5.00 m is completely
filled with water through a threaded hole in its lid. A hollow
vertical pipe 5.00 m tall is screwed into the hole. The pipe has a
cross-sectional opening area of 8.00 cm2. If the pipe is then filled
to a height of 4.00 m with an additional amount of water, what
change in pressure, if any, will be read by a gauge in the side of



the tank?

13.39 [I]  A cubic covered tank 5.00 m by 5.00 m by 5.00 m is completely
filled with water through an 8.00-cm2 hole in its lid. A plug is then
forced into the hole with a vertical force of 200 N. What change in
pressure, if any, will be read by a gauge in the side of the tank as a
result of inserting the plug?

13.40 [I]  For the press in Fig. 13-3, the ratio of the output cross-sectional
area to the input cross-sectional area is 1000:1.000. If the load is
10 000 N, what input force will hold it in equilibrium?

13.41 [I]  The output area A1 of the piston in the hydraulic press in Fig. 13-3
is 400 cm2, and it supports a load of 600 kg. What must be the
input area A2 if an input force of 100 N is to keep the load in
equilibrium?

13.42 [I]  For the hydraulic press in Fig. 13-3, the ratio of the output force to
the input force is 800:1.00. If the load is to be raised 2.00 m, how
far must the input piston be moved downward? Assume there are
no energy losses. [Hint: Work-in equals work-out.]

13.43 [II]  The area of a piston of a force pump is 8.0 cm2. What force must
be applied to the piston to raise oil (ρ = 0.78 g/cm2) to a height of
6.0 m? Assume the upper end of the oil is open to the
atmosphere.

13.44 [II]  The diameter of the large piston of a hydraulic press is 20 cm,
and the area of the small piston is 0.50 cm2. If a force of 400 N is
applied to the small piston, (a) what is the resulting force exerted
on the large piston? (b) What is the increase in pressure
underneath the small piston? (c) Underneath the large piston?

13.45 [I]  An iron cube 20.0 cm on each side is submerged in a tank filled
with olive oil. Determine the buoyant force on the cube. [Hint:
Use Table 12-1.]



13.46 [I]  The cube in the previous problem is attached to a scale and
weighed while it is submerged. Determine the scale reading.

13.47 [II]  A metal cube, 2.00 cm on each side, has a density of 6600 kg.
Find its apparent mass when it is totally submerged in water.

13.48 [II]  A solid wooden cube, 30.0 cm on each edge, can be totally
submerged in water if it is pushed downward with a force of 54.0
N. What is the density of the wood?

13.49 [II]  A metal object “weighs” 26.0 g in air and 21.48 g when totally
immersed in water. What is the volume of the object? What is its
mass density?

13.50 [II]  A solid piece of aluminum (ρ = 2.70 g/cm3) has a mass of 8.35 g
when measured in air. If it is hung from a thread and submerged
in a vat of oil (ρ = 0.75 g/cm3), what will be the tension in the
thread?

13.51 [II]  A beaker contains oil of density 0.80 g/cm3. A 1.6-cm cube of
aluminum (ρ = 2.70 g/cm3) hanging vertically on a thread is
submerged in the oil. Find the tension in the thread.

13.52 [II]  A tank containing oil of sp gr = 0.80 rests on a scale and weighs
78.6 N. By means of a very fine wire, a 6.0 cm cube of
aluminum, sp gr = 2.70, is submerged in the oil. Find (a) the
tension in the wire and (b) the scale reading if none of the oil
overflows.

13.53 [II]  Downward forces of 45.0 N and 15.0 N, respectively, are
required to keep a plastic block totally immersed in water and in
oil, respectively. If the volume of the block is 8000 cm3, find the
density of the oil.

13.54 [III]  Determine the unbalanced force acting on an iron ball (r = 1.5
cm, ρ = 7.8 g/cm3) when just released while totally immersed in
(a) water and (b) mercury (ρ = 13.6 g/cm3). What will be the
initial acceleration of the ball in each case?



13.55 [II]  A 2.0-cm cube of metal is suspended by a fine thread attached to
a scale. The cube appears to have a mass of 47.3 g when
measured submerged in water. What will its mass appear to be
when submerged in glycerin, sp gr = 1.26? [Hint: Find ρ too.]

13.56 [II]  A balloon and its gondola have a total (empty) mass of 2.0 × 102

kg. When filled, the balloon contains 900 m3 of helium at a
density of 0.183 kg. Find the added load, in addition to its own
weight, that the balloon can lift. The density of air is 1.29 kg.

13.57 [I]  A piece of metal has a measured mass of 5.00 g in air, 3.00 g in
water, and 3.24 g in benzene. Determine the mass density of the
metal and of the benzene.

13.58 [II]  A spring whose composition is not completely known might be
either bronze (sp gr 8.8) or brass (sp gr 8.4). It has a mass of 1.26
g when measured in air and 1.11 g in water. Which is it made of?

13.59 [II]  What fraction of the volume of a piece of quartz (ρ = 2.65 g/cm3)
will be submerged when it is floating in a container of mercury (ρ
= 13.6 g/cm3)?

13.60 [II]  A cube of wood floating in water supports a 200-g mass resting
on the center of its top face. When the mass is removed, the cube
rises 2.00 cm. Determine the volume of the cube.

13.61 [III]  Suppose we have a spring scale that reads in grams and we
measure the mass of a cork in air to be 5.0 g. Using the same
scale, it is found that a sinker has an apparent mass of 86 g when
completely immersed in water. The cork is attached to the
sinker, the two are completely immersed in water, and now the
scale reads 71 g. Determine the density of the cork. [Hint: The
buoyance of the cork is responsible for the decreased scale
reading.]

13.62 [II]  A glass of water has a 10-cm3 ice cube floating in it. The glass is
filled to the brim with cold water. By the time the ice cube has



completely melted, how much water will have flowed out of the
glass? The sp gr of ice is 0.92.

13.63 [II]  A glass tube is bent into the form of a U. A 50.0-cm height of
olive oil in one arm is found to balance 46.0 cm of water in the
other. What is the density of the olive oil?

13.64 [II]  On a day when the pressure of the atmosphere is 1.000 × 105 Pa,
a chemist distills a liquid under slightly reduced pressure. The
pressure within the distillation chamber is read by an oil-filled
manometer (density of oil = 0.78 g/cm3). The difference in
heights on the two sides of the manometer is 27 cm. What is the
pressure in the distillation chamber?

ANSWERS TO SUPPLEMENTARY PROBLEMS

13.26 [I]    2.27 lb/in2; 15.7 kPa

13.27 [I]    6.4 MPa

13.28 [I]    9.81 × 103 Pa

13.29 [I]    2.8 × 105 Pa

13.30 [I]    1.12 × 108 Pa

13.31 [I]    189 kPa

13.32 [I]    310 kN

13.33 [I]    255 kPa

13.34 [II]  4.4 kN

13.35 [II]  (a) 11 N downward; (b) 20 N downward



13.36 [II]  (a) 1.1 N upward; (b) 9.6 N upward

13.37 [II]  490 kPa

13.38 [II]  39.2 kPa

13.39 [I]    250 kPa

13.40 [I]    10.00 N

13.41 [I]    6.80 cm2

13.42 [I]    1.60 km

13.43 [II]  37 N

13.44 [II]  (a) 2.5 × 105 N; (b) 8.0 MPa; (c) 8.0 MPa

13.45 [I]    72 N

13.46 [I]    0.55 kN

13.47 [II]  44.8 g

13.48 [II]  800 kg

13.49 [II]  4.55 cm3, 5.72 × 103 kg

13.50 [II]  0.059 N

13.51 [II]  0.076 N

13.52 [II]  (a) 4.0 N; (b) 80 N

13.53 [II]  620 kg

13.54 [III] (a) 0.94 N down, 8.6 m/s2 down; (b) 0.80 N up, 7.3 m/s2 up

13.55 [II]  45 g



13.56 [II]  7.8 kN

13.57 [I]    2.50 × 103 kg, 880 kg

13.58 [II]  brass

13.59 [II]  0.195

13.60 [II]  1.00 × 103 cm3

13.61 [III] 2.5 × 102 kg

13.62 [II]  none

13.63 [II]  920 kg

13.64 [II]  98 kPa



Fluids in Motion

Fluid Flow or Discharge Rate(J): When a fluid that fills a pipe flows
through the pipe with an average speed υ, the flow rate J is

where A is the cross-sectional area of the pipe. The units of J are m3/s in the
SI and ft3/s in U.S. customary units. Sometimes J is called the rate of flow
or the discharge rate.

Equation of Continuity: Suppose an incompressible (constant-density)
fluid fills a pipe and flows through it. Suppose further that the cross-
sectional area of the pipe is A1 at one point and A2 at another. Since the flow
through A1 must equal the flow through A2, one has

where υ1 and υ2 are the average fluid speeds across A1 and A2, respectively.

The Shear Rate of a fluid is the rate at which the shear strain within the
fluid is changing. Because strain has no units, the SI unit for shear rate is s-1.

The Viscosity(η) of a fluid is a measure of how large a shear stress is
required to produce a shear rate of one. Its unit is that of stress per unit shear
rate, or Pa·s in the SI. Another SI unit is the N·s/m2 (or kg/m·s), called the
poiseuille (P1): 1 P1 = 1 kg/m·s = 1 Pa·s. Other units used are the poise (P),
where 1 P - 0.1, and the centipoise (cP), where 1 cP = 10-3 Pl. A viscous
fluid, such as tar, has a large η.



Poiseuille’s Law: The fluid flow through a cylindrical pipe of length L and
cross-sectional radius r is given by

where Pi - Po is the pressure difference between the two ends of the pipe
(input minus output).

The Work Done by a Piston in forcing a volume V of fluid into a cylinder
against an opposing pressure P is given by PV.

The Work Done by a Pressure P acting on a surface of area A as the
surface moves through a distance ∆x normal to the surface (thereby
displacing a volume AΔx =ΔV) is

Bernoulli’s Equation for the steady flow of a continuous stream of fluid:
Consider two different points along the stream path. Let point-1 be at a
height h1 and let υ1, and ρ1 P1 be the fluid-speed, density, and absolute
pressure at that point. Similarly define h2, υ2, ρ2, and P2 for point-2. Then,
provided the fluid is incompressible and has negligible viscosity,

where ρ1 = ρ2 = ρ and g is the acceleration due to gravity.

Torricelli’s Theorem: Suppose that a tank contains liquid and is open to
the atmosphere at its top. If an orifice (opening) exists in the tank at a
distance h below the top of the liquid, then the speed of outflow from the
orifice is  provided the liquid obeys Bernoulli’s Equation and the tank is
big enough so that the top of the liquid may be regarded as essentially
motionless.

The Reynolds Number (NR) is a dimensionless number that applies to a
fluid of viscosity η and density ρ flowing with speed υ through a pipe (or
past an obstacle) with diameter D:



For systems of the same geometry, flows will usually be similar provided
their Reynolds numbers are close. Turbulent flow occurs if NR for the flow
exceeds about 2000 for pipes or about 10 for obstacles.

PROBLEM SOLVING GUIDE

Remember that 1.0 cm2 = 1.0 cm × 1.0 cm, or 1.00 × 10-2 m × 1.00 × 10-2 m
= 1.00 × 10-4 m2; also, 1.00 liter = 1000 cm3.

SOLVED PROBLEMS

14.1 [I]   Oil flows through a pipe 8.0 cm in diameter, at an average speed of
4.0 m/s. What is the flow rate, J, in m2/s and m3/h?

14.2 [I]    Exactly 250 mL of fluid flows out of a tube whose inner diameter
is 7.0 mm in a time of 41 s. What is the average speed of the fluid
in the tube?

From J = Aυ, since 1 mL = 10-6 m3,

14.3 [I]    A 14-cm inner diameter (i.d.) water main furnishes water to a 1.00
cm i.d. (i.e., inner diameter) faucet pipe. If the average speed in
the faucet pipe is 3.0 cm/s, what will be the average speed it
causes in the water main?

The two flows are equal. From the Continuity Equation,



J = A1υ1 = A2υ2

Letting 1 be the faucet and 2 be the water main, we have

14.4 [II]    How much water will flow in 30.0 s through 200 mm of capillary
tube of 1.50 mm i.d., if the pressure differential across the tube is
5.00 cm of mercury? The viscosity of water is 0.801 cP and ρ for
mercury is 13 600 kg/m3.

We shall make use of Poiseuille’s Law, J = πr4(Pi - Po)/8ηL, and
therefore,

Pi - Po = ρgh = (13 600 kg/m3(9.81 m/s2)(0.050 0 m) = 6660 N/m2

The viscosity expressed in kg/m · s is

Thus,

In 30.0 s, the quantity that would flow out of the tube is (5.2 mL/s)
(30 s) = 1.6 × 102 mL.

14.5 [II]   An artery in a person has been reduced to half its original inside
diameter by deposits on the inner artery wall. By what factor will
the blood flow through the artery be reduced if the pressure
differential across the artery has remained unchanged?

The relationship governing flow rate, pressure differential, and
opening radius is Poiseuille’s Law, wherein J ∝ r4. Therefore,



14.6 [II]    Under the same pressure differential, compare the flow of water
through a pipe to the flow of SAE No. 10 oil. η for water is 0.801
cP; η for the oil is 200 cP.

From Poiseuille’s Law, J ∝ 1/η. Therefore, since everything else
cancels,

The flow of water is 250 times as large as that of the oil under the
same pressure differential.

14.7 [II]  Calculate the power output of the heart if, in each heartbeat, it
pumps 75 mL of blood at an average pressure of 100 mmHg.
Assume 65 heartbeats per minute.

The work done by the heart is PΔV. In one minute, ΔV = (65)(75
× 10-6). Also

14.8 [II]  What volume of water will escape per minute from an open-top
tank through an opening 3.0 cm in diameter that is 5.0 m below
the water level in the tank? (See Fig. 14-1.)



Fig. 14-1

There is a steady flow of fluid, and therefore we can use
Bernoulli’s Equation, with 1 representing the top level and 2 the
orifice. The pressure at the outlet inside the free jet is atmospheric.
Then P1 = P2 and h1 = 5.0 m, h2 = 0.

If the tank is large, ν1 can be approximated as zero. Then, solving
for ν2, we obtain Torricelli’s Equation:

and the flow is given by

J = ν2A2 = (9.9 m/s)(1.5 × 10-2 m)2 = 7.0 × 10-3 m3/s = 0.42 m3/min

14.9 [II]    An open water tank in air springs a leak at position-2 in Fig. 14-2,
where the pressure due to the water at position-1 is 500 kPa. What
is the velocity of escape of the water through the hole?

Fig. 14-2

The pressure at position-2 in the free jet is atmospheric. We use
Bernoulli’s Equation with P1 - P2 = 5.00 × 105 N/m2, h1 = h2, and
the approximation ν1 = 0. Then



14.10 [III] Water flows at the rate of 30 mL/s through an opening at the
bottom of a large tank in which the water is 4.0 m deep. Calculate the
rate of escape of the water if an added pressure of 50 kPa is applied to
the top of the water.

Take position-1 at the liquid surface at the top of the tank, and
position-2 at the opening. From Bernoulli’s Equation where ν1 is
essentially zero,

We can apply this expression twice, before the pressure is added
and after.

If the opening and the top of the tank are originally at atmospheric
pressure, then

(P1 - P2)before = 0

and division of the second equation by the first gives

14.11 [II]   How much work W is done by a pump in raising 5.00 m3 of
water 20.0 m and forcing it into a main at a gauge pressure of 150



kPa?

14.12 [II]   A horizontal pipe has a constriction in it, as shown in Fig. 14-3.
At point-1 the diameter is 6.0 cm, while at point-2 it is only 2.0 cm.
At point-1, ν1 = 2.0 m/s and P1 = 180 kPa. Calculate ν1 and P1.

Fig. 14-3

We have two unknowns and will need two equations. Using
Bernoulli’s Equation with h1 = h2, we have

Furthermore, ν1 = 2.0 m/s, and the equation of continuity tells us
that

Substituting then gives

from which P2 = 0.20 × 105 N/m2 = 20 kPa.

14.13 [III] What must be the gauge pressure in a large-diameter hose if the
nozzle is to shoot water straight upward to a height of 30.0 m?

To rise to a height h, a projectile must have an initial speed .
(We obtain this by equating to  .) We can find this
speed in terms of the difference between the pressures inside and



outside the hose by writing Bernoulli’s Equation for points just
inside and outside the nozzle in terms of absolute pressure:

Here hout ≈ hin, and because the hose is large, νin ≈ 0; therefore,

Substitution of  for νout yields

Pin - Pout = ρgh = (1000 kg/m3)(9.81 m/s2)(30.0 m) = 294 kPa

Since Pout = PA, this is the gauge pressure inside the hose. How
could you obtain this latter equation directly from Torricelli’s
Theorem?

14.14 [III] At what rate does water flow from a 0.80 cm i.d. faucet if the
water (or gauge) pressure is 200 kPa?

We apply Bernoulli’s Equation for points just inside and outside
the faucet (using absolute pressure):

Note that the pressure inside due only to the water is 200 kPa, and
therefore Pin - Pout = 200 kPa since Pout = PA. Taking hout = hin,

14.15 [II]  The pipe shown in Fig. 14-4 has a diameter of 16 cm at section-1
and 10 cm at section-2. At section-1 the pressure is 200 kPa. Point-2
is 6.0 m higher than point-1. When oil of density 800 kg/m3 flows at a
rate of 0.030 m3/s, find the pressure at point-2 if viscous effects are
negligible.



Fig. 14-4

We can now use Bernoulli’s Equation:

14.16 [III] A venturi meter equipped with a differential mercury manometer
is shown in Fig. 14-5. At the inlet, point-1, the diameter is 12 cm,
while at the throat, point-2, the diameter is 6.0 cm. What is the flow J
of water through the meter if the mercury manometer reading is 22
cm? The density of mercury is 13.6 g/cm3.



Fig. 14-5

From the manometer reading (remembering that 1 g/cm3 = 1000
kg/m3):

P1 - P2 = ρgh = (13 600 kg/m3)(9.81 m/s2)(0.22 m) = 2.93 × 104 N/m2

Since J = ν1A1 = ν2A2, we have ν1 = J/A1 and ν2 = J/A2. Using
Bernoulli’s Equation with h1 - h2 = 0 gives

where

Substitution then gives J = 0.022 m3/s.

14.17 [III] A wind tunnel is to be used with a 20-cm-high model car to
approximately reproduce the situation in which a 550-cm-high car is
moving at 15 m/s. What should be the wind speed in the tunnel? Is the
flow likely to be turbulent?

We want the Reynolds number NR to be the same in both cases, so
that the situations will be similar. That is,



Both ρ and η are the same in the two cases, hence,

To investigate turbulence, evaluate NR using ρ = 1.29 kg/m3 and η
= 1.8 × 10-5 Pa·s for air. Consequently NR = 5.9 × 106, a value far
in excess of that required for turbulent flow. The flow will
certainly be turbulent.

SUPPLEMENTARY PROBLEMS

14.18 [I]  Oil flows through a 4.0-cm-i.d. (i.e., inner diameter) pipe at an
average speed of 2.5 m/s. Find the flow in m3/s and cm3/s.

14.19 [I]  Compute the average speed of water in a pipe having an i.d. of 5.0
cm and delivering 2.5 m3 of water per hour.

14.20 [II]  The speed of glycerin flowing in a 5.0-cm-i.d. pipe is 0.54 m/s.
Find the fluid’s speed in a 3.0-cm-i.d. pipe that connects with it,
both pipes flowing full.

14.21 [I]  Gasoline flows through a pipe whose cross-sectional area is 100
cm2 at an average speed of 3.0 m/s. Determine the flow rate.

14.22 [I]  Water is delivered at an average speed of 4.0 m/s via a pipe with
an open cross-sectional area of 25.0 cm2. How much water will
arrive in 0.50 h?

14.23 [I]  A long tube delivers 10.0 liters of alcohol in 10.0 min. What is the
value of the flow rate? [Hint: Recall that 1.00 liter = 1000 cm3.]



14.24 [I]  Suppose a pipe having an opening of area 4.00 cm2 moves 2.00
m3 of oil in a time of 4.00 min. Compute the average speed of the
oil along the pipe.

14.25 [I]  Wine is flowing at an average speed of 1.20 m/s through a pipe
having a diameter of 4.00 cm. Near the storage vat the tube
narrows to a diameter of 2.00 cm. What is the speed of the fluid
in that narrow section? [Hint: The flow rate must be constant.]

14.26 [II]   How long will it take for 500 mL of water to flow through a 15-
cm-long, 3.0-mm-i.d. pipe, if the pressure differential across the
pipe is 4.0 kPa? The viscosity of water is 0.80 cP.

14.27 [II]  A molten plastic flows out of a tube that is 8.0 cm long at a rate
of 13 cm3/min when the pressure differential between the two
ends of the tube is 18 cm of mercury. Find the viscosity of the
plastic. The i.d. of the tube is 1.30 mm. The density of mercury is
13.6 g/cm3.

14.28 [II]  In a horizontal pipe system, a pipe (i.d. 4.0 mm) that is 20 cm
long connects in line to a pipe (i.d. 5.0 mm) that is 30 cm long.
When a viscous fluid is being pushed through the pipes at a
steady rate, what is the ratio of the pressure difference across the
20-cm pipe to that across the 30-cm pipe?

14.29 [II]  A hypodermic needle of length 3.0 cm and i.d. 0.45 mm is used
to draw blood (η = 4.0 mPl). Assuming the pressure differential
across the needle is 80 cmHg, how long does it take to draw 15
mL?

14.30 [II]  In a blood transfusion, blood flows from a bottle at atmospheric
pressure into a patient’s vein in which the pressure is 20 mmHg
higher than atmospheric. The bottle is 95 cm higher than the vein,
and the needle into the vein has a length of 3.0 cm and an i.d. of
0.45 mm. How much blood flows into the vein each minute? For
blood, η = 0.004 0 Pa·s and ρ = 1005 kg/m3.

14.31 [I]  How much work does the piston in a hydraulic system do during



one 2.0-cm stroke if the end area of the piston is 0.75 cm2 and the
pressure in the hydraulic fluid is 50 kPa?

14.32 [II]  Use Bernoulli’s Equation to derive Torricelli’s Theorem. Assume
a very large open tank filled with a nonviscous liquid. [Hint: The
fluid at the top can be considered to be at rest.]

14.33 [II]  A large tank of nonviscous liquid, which is open to the
surrounding air, springs a leak 4.5 m below the top of the liquid.
What is the theoretical velocity of outflow from the hole? If the
area of the hole is 0.25 cm2, how much liquid will escape in
exactly 1 minute?

14.34 [II]  Find the flow in liters/s of a nonviscous liquid through an
opening 0.50 cm2 in area and 2.5 m below the level of the liquid
in an open tank surrounded by air.

14.35 [II] Calculate the theoretical velocity of efflux of water, into the
surrounding air, from an aperture that is 8.0 m below the surface
of water in a large tank, if an added pressure of 140 kPa is
applied to the surface of the water.

14.36 [II]  What horsepower is required to force 8.0 m3 of water per minute
into a water main at a pressure of 220 kPa?

14.37 [II]  A pump lifts water at the rate of 9.0 liters/s from a lake through a
5.0-cm-i.d. pipe and discharges it into the air at a point 16 m
above the level of the water in the lake. What are the theoretical
(a) velocity of the water at the point of discharge and (b) power
delivered by the pump.

14.38 [II] Water flows steadily through a horizontal pipe of varying cross
section. At one place the pressure is 130 kPa and the speed is
0.60 m/s. Determine the pressure at another place in the same
pipe where the speed is 9.0 m/s.

14.39 [II]  A pipe of varying inner diameter carries water. At point-1 the
diameter is 20 cm and the pressure is 130 kPa. At point-2, which



is 4.0 m higher than point-1, the diameter is 30 cm. If the flow is
0.080 m3/s, what is the pressure at the second point?

14.40 [II] Fuel oil of density 820 kg/m3 flows through a venturi meter
having a throat diameter of 4.0 cm and an entrance diameter of
8.0 cm. The pressure drop between entrance and throat is 16 cm
of mercury. Find the flow. The density of mercury is 13 600
kg/m3.

14.41 [II]  Find the maximum amount of water that can flow through a 3.0-
cm-i.d. pipe per minute without turbulence. Take the maximum
Reynolds number for nonturbulent flow to be 2000. For water at
20 °C, η = 1.0 × 10-3 Pa·s.

14.42 [I]   How fast can a raindrop (r = 1.5 mm) fall through air if the flow
around it is to be close to turbulent—that is, for NR close to 10?
For air, η = 1.8 × 10-5 Pa·s and ρ = 1.29 kg/m3.

ANSWERS TO SUPPLEMENTARY PROBLEMS

14.18 [I]    3.1 × 10-3 m3/s = 3.1 × 103 cm3/s

14.19 [I]    0.35 m/s

14.20 [II]   1.5 m/s

14.21 [I]    30 × 10–3 m3/s

14.22 [I]    18 m3

14.23 [I]    1.67 × 10-5 m3/s

14.24 [I]    0.208 m/s

14.25 [I]    4.80 m/s



14.26 [II]   7.5 s

14.27 [II]    0.097 kg/m·s = 97 cP

14.28 [II]    1.6

14.29 [II]    17 s

14.30 [II]    3.4 cm3

14.31 [I]     75 mJ

14.33 [II]    9.4 m/s, 0.014 1 m3

14.34 [II]    0.35 liter/s

14.35 [II]    21 m/s

14.36 [II]    39 hp

14.37 [II]    (a) 4.6 m/s; (b) 2.0 hp

14.38 [II]    90 kPa

14.39 [II]    93 kPa

14.40 [II]    9.3 × 10-3 m3/s

14.41 [II]    0.002 8 m3

14.42 [I]    4.6 cm/s



Thermal Expansion

Temperature (T) may be measured on the Celsius scale, on which the
freezing point of water is at 0 °C, and the boiling point (under standard
conditions) is at 100 °C. The Kelvin (or absolute) scale is displaced 273.15
Celsius-size degrees from the Celsius or centigrade scale, so that the
freezing point of water is 273.15 K and the boiling point is 373.15 K.
Absolute zero, a temperature discussed further in Chapter 16, is at 0 K
(-273.15 °C). The still-used Fahrenheit scale is related to the Celsius scale
by

Note that one does not say 0 °K or zero degrees kelvin. Kelvins are treated
like any other unit; thus it’s 1K, 1m, and 1N. As a rule temperatures will
be designated in kelvins.

Because of the way the scale is constructed, a temperature change ΔT
will be numerically, by the same in both the Celsius (centigrade) and Kelvin
scales.

Linear Expansion of Solids: When a solid is subjected to a rise in
temperature ΔT, its increase in length ΔL is very nearly proportional to its
initial length L0 multiplied by ΔT. That is,

where the proportionality constant α is called the coefficient of linear
expansion. The value of α depends on the nature of the substance. For our
purposes, we can take α to be constant independent of T, although that’s
rarely, if ever, exactly true. (See Table 15-1.)



From the above equation, α is the change in length, per unit initial length,
per degree change in temperature. For example, if a 1.000 000 cm length of
brass becomes 1.000 019 cm long when the temperature is raised 1.0 °C, the
linear expansion coefficient for brass is

Area Expansion: If an area A0 expands to A0 + ΔA when subjected to a
temperature rise ΔT, then

where γ is the coefficient of area expansion. For isotropic solids (those that
expand in the same way in all directions), γ ≈ 2α.

TABLE 15-1
Approximate Values* of Coefficients of Linear Expansion



Volume Expansion: If a volume V0 changes by an amount ΔV when
subjected to a temperature change of ΔT, then

where β is the coefficient of volume expansion. This can be either an
increase or decrease in volume. For isotropic solids, β ≈ 3α. (See Table 15-
2.)

TABLE 15-2
Approximate Values* of Coefficients of Volumetric Expansion



PROBLEM SOLVING GUIDE

In the next few chapters, we’ll be dealing with problems involving
temperature (T). As a rule these will most often involve absolute
temperatures [measured in kelvins (K)]. It turns out that an absolute
temperature change (ΔT) is numerically equal to a change in Celsius. This
chapter deals with only temperature changes so we can use ΔT in either °C
or in K.

SOLVED PROBLEMS

15.1 [I] A copper bar is 80 cm long at 15 °C. What is the increase in length
when it is heated to 35 °C? The linear expansion coefficient for
copper is 1.7 × 10-5 °C-1.



15.2 [II]    A cylinder of diameter 1.000 00 cm at 30 °C is to be slid into a
hole in a steel plate. The hole has a diameter of 0.999 70 cm at 30
°C. To what temperature must the plate be heated? For steel, α =
1.1 × 10-5 °C-1.

The plate will expand in the same way whether or not there is a
hole in it. Hence, the hole expands in the same way a circle of
steel filling it would expand. We want the diameter of the hole to
change by

Using ΔL = αLΔT,

The temperature of the plate must be 30 + 27 = 57 °C

15.3 [I]     A steel tape is calibrated at 20 °C. On a cold day when the
temperature is -15 °C, what will be the percent error in the tape?
αsteel 1.1 × 10-5 °C-1.

For a temperature change from 20 °C to -15 °C, we have ΔT -35
°C. Then,

15.4 [II]    A copper rod (α = 1.70 × 10-5 °C-1) is 20 cm longer than an
aluminum rod (α = 2.20 × 10-5 °C-1). How long should the copper
rod be if the difference in their lengths is to be independent of
temperature?

For their difference in lengths not to change with temperature, ΔL
must be the same for both rods under the same temperature
change. That is,



where L0 is the length of the copper rod, and ΔT is the same for
both rods. Solving for the original length yields L0 = 0.88 m.

15.5 [II]    At 20.0 °C a steel ball (α = 1.10 × 10-5 °C-1) has a diameter of
0.900 0 cm, while the diameter of a hole in an aluminum plate (α =
2.20 × 10-5 °C-1) is 0.899 0 cm. At what temperature (the same for
both) will the ball just pass through the hole?

At a temperature ΔT higher than 20.0 °C, the diameters of the hole
and of the ball should be equal:

0.900 0 cm + (0.900 0 cm)(1.10 × 10-5 °C-1) ΔT
            = 0.899 0 cm + (0.899 0 cm)(2.20 × 10-5 °C-1) ΔT

Solving for ΔT, we find ΔT = 101 °C. Because the original
temperature was 20.0 °C, the final temperature must be 121 °C.

15.6 [II]    A steel tape measures the length of a copper rod as 90.00 cm when
both are at 10 °C, the calibration temperature for the tape. What
would the tape read for the length of the rod when both are at 30
°C? αsteel = 1.1 × 10-5 °C-1; αsteel = 1.7 × 10-5 °C-1.

At 30 °C, the copper rod will be of length

while adjacent “centimeter” marks on the steel tape will be
separated by a distance of

(1.000 cm)(1 + αs ΔT)

Therefore, the number of “centimeters” read on the tape will be

Using the approximation



for x small compared to 1, we have

The tape will read 90.01 cm.

15.7 [II]    A glass flask is filled “to the mark” with 50.00 cm3 of mercury at
18 °C. If the flask and its contents are heated to 38 °C, how much
mercury will be above the mark? αglass = 9.0 × 10-6 °C-1 and
βmercury = 182 × 10-6 °C-1.

We shall take βglass = 3αglass as a good approximation. The flask
interior will expand just as though it were a solid piece of glass.
Thus,

15.8 [II]    The density of mercury at exactly 0 °C is 13 600 kg/m3, and its
volume expansion coefficient is 1.82 × 10-4 °C-1. Calculate the
density of mercury at 50.0 °C.

Let

ρ0 = Density of mercury at 0 °C
ρ1 = Density of mercury at 50 °C

V0 = Volume of m kg of mercury at 0 °C

V1 = Volume of m kg of mercury at 50 °C

Since the mass does not change, m = ρ0V0 = ρ1V1, from which it



follows that

Substitution into the first equation yields

15.9 [II]    Show that the density of a liquid or solid changes in the following
way with temperature: .

Consider a mass m of liquid having a volume V0 for which ρ0 =
m/V0. After a temperature change ΔT, the volume will be

and the density will be

But m/V0 = ρ0, and so this can be written as

Thus,

In practice, ρ is close enough to ρ0 so that we can say 
.

15.10 [II]    Solve Problem 15.8 using the result of Problem 15.9.

We have

Hence 



and 

15.11 [III] A steel wire of 2.0 mm2 cross section at 30 °C is held straight (but
under no tension) by attaching its ends firmly to two points a
distance 1.50 m apart. (Of course this will have to be done out in
space so the wire is weightless, but don’t worry about that.) If the
temperature now decreases to -10 °C, and if the two tie points
remain fixed, what will be the tension in the wire? For steel, α =
1.1 × 10-5 °C-1 and Y = 2.0 × 1011 N/m2.

If it were free to do so, the wire would contract a distance ΔL as it
cooled, where

But the ends are fixed. As a result, forces at the ends must, in
effect, stretch the wire this same length ΔL. Therefore, from Y =
(F/A)(ΔL/L0, and

Strictly, we should have substituted (1.5 - 6.6 × 10-4) m for L in
the expression for the tension. However, the error incurred in not
doing so is negligible.

15.12 [III] When a building is constructed at -10 °C, a steel beam (cross-
sectional area 45 cm2) is put in place with its ends cemented in
pillars. If the sealed ends cannot move, what will be the
compressional force on the beam when the temperature is 25 °C?
For this kind of steel, α = 1.1 × 10-5 °C-1 and Y = 2.0 × 1011 N/m2.

Proceed much as in Problem 15.11:



SUPPLEMENTARY PROBLEMS

15.13 [I]    Create an equation to convert Fahrenheit degrees into Celsius
degrees. [Hint: Refer to Eq. (15.1).]

15.14 [I]    Water boils at 212 °F. Use the equation you created in Problem
15.13 to compute the corresponding Celsius temperature.

15.15 [I]    Aluminum melts at 660 °C. How much is that in kelvins?

15.16 [I]    Dry ice freezes at a temperature of −109.3 °F. What is that in
Celsius?

15.17 [I]    Lead melts at 621 °F. What temperature is that in kelvins?

15.18 [I]    A gold wire 20 m long has its temperature lowered by 25.0 °C.
Assume the linear coefficient of expansion is constant over that
range of temperatures. Calculate the change in length of the wire.
[Hint: Use Table 15-1.]

15.19 [I]    A Pyrex glass rod 200.0 cm long has its temperature raised from
10.0 °C to 50.0 °C. Will it end up longer or shorter and by how
much? Assume the linear coefficient of expansion is constant over
that range of temperatures. [Hint: Use Table 15-1.]

15.20 [I]    A stainless steel wire is 150 cm long at 20.0 °C. An electric
current is passed along it, and it expands to 151.2 cm. What is its
new temperature? [Hint: Use Table 15-1.]

15.21 [I]    Compute the increase in length of 50 m of copper wire when its
temperature changes from 12 °C to 32 °C. For copper, α = 1.7 ×
10-5 °C-1.

15.22 [I]    A rod 3.0 m long is found to have expanded 0.091 cm in length
after a temperature rise of 60 °C. What is α for the material of the
rod?

15.23 [I]    At 15.0 °C, a bare wheel has a diameter of 30.000 cm, and the



inside diameter of its steel rim is 29.930 cm. To what temperature
must the rim be heated so as to slip over the wheel? For this type
of steel, α = 1.10 × 10-5 °C-1.

15.24 [I]    An ordinary glass sphere has a volume of 2000 cm3 at a
temperature of 0.00 °C. Determine its approximate volume change
when raised to 100 °C. [Hint: Use Table 15-2. Be careful
converting from cm3 to m3.]

15.25 [II]    An iron ball has a diameter of 6 cm and is 0.010 mm too large to
pass through a hole in a brass plate when the ball and plate are at
a temperature of 30 °C. At what temperature (the same for ball
and plate) will the ball just pass through the hole? α = 1.2 × 10-5

°C-1 and 1.9 × 10-5 °C-1 for iron and brass, respectively.

15.26 [II]    (a) An aluminum measuring rod, which is correct at 5.0 °C,
measures a certain distance as 88.42 cm at 35.0 °C. Determine
the error in measuring the distance due to the expansion of the
rod. (b) If this aluminum rod measures a length of steel as 88.42
cm at 35.0 °C, what is the correct length of the steel at 35 °C?
The coefficient of linear expansion of that sample of aluminum is
22 × 10-6 °C-1.

15.27 [II]    A solid sphere of mass m and radius b is spinning freely on its
axis with angular velocity ω. When heated by an amount ΔT, its
angular velocity changes to ω. Find ω0/ω if the linear expansion
coefficient for the material of the sphere is α.

15.28 [I]    Calculate the increase in volume of 100 cm3 of mercury when its
temperature changes from 10 °C to 35 °C. Take the volume
coefficient of expansion of that mercury to be 0.000 18 °C-1.

15.29 [II]    If a glass specific gravity bottle holds 50.000 mL at 15 °C, find
its capacity at 25 °C. Take the coefficient of linear expansion of
the glass to be 9.0 × 10-6 °C-1.

15.30 [II]    Determine the change in volume of a block of cast iron 5.0 cm ×



10 cm × 6.0 cm, when the temperature of the block is made to
change from 15 °C to 47 °C. The coefficient of linear expansion
of cast iron is 0.000 010 °C-1.

15.31 [II]    A glass vessel is filled with exactly 1 liter of turpentine at 20 °C.
What volume of the liquid will overflow if the temperature is
raised to 86 °C? The coefficient of linear expansion of that glass
is 9.0 × 10-6 °C-1; the coefficient of volume expansion of
turpentine is 97 × 10-5 °C-1.

15.32 [II]    The density of a particular sample of gold is 19.30 g/cm3 at 20.0
°C, and the coefficient of linear expansion is 14.3 × 10-6 °C-1.
Compute the density of that sample at 90.0 °C. [Hint: Take a
look at Problem 15.9.]

ANSWERS TO SUPPLEMENTARY PROBLEMS

15.13 [I] Celsius temperature = (5/9)[Fahrenheit temperature −32]

15.14 [I] 100 °C

15.15 [I] 933 K

15.16 [I] −78.5 °C

15.17 [I] 600 K

15.18 [I] 6.5 mm

15.19 [I] longer by 0.2 mm

15.20 [I] 482 °C

15.21 [I] 1.7 cm



15.22 [I] 5.1 × 10-6 °C-1

15.23 [I] 227 °C

15.24 [I] 5.2 × 10–6 m3

15.25 [II] 54 °C

15.26 [II] (a) 0.058 cm; (b) 88 cm

15.27 [II] 1 + 2αΔT + (αΔT)2

15.28 [I] 0.45 cm3

15.29 [II] 50.014 mL

15.30 [II] 0.29 cm3

15.31 [II] 62 mL

15.32 [II] 19.2 g/cm3



Ideal Gases

An Ideal (or Perfect) Gas is a theoretical construct composed of tiny,
moving, noninteracting particles. It obeys the Ideal Gas Law, given below.
At low to moderate pressures, and at temperatures not too low, the following
common gases can be considered ideal: air, nitrogen, oxygen, helium,
hydrogen, and neon. Almost any chemically stable gas behaves “ideally” if
it is far removed from conditions under which it will liquefy or solidify. In
other words, a real gas behaves like an ideal gas when its atoms or
molecules are so far apart that they do not appreciably interact with one
another.

One Mole of a Substance is the amount of the substance that contains as
many particles as there are atoms in exactly 12 grams (0.012 kg) of the
isotope carbon-12. It follows that one kilomole (kmol) of a substance is the
mass (in kg) that is numerically equal to the molecular (or atomic) mass of
the substance. For example, the molecular mass of hydrogen gas, H2, is 2
kg/kmol; hence, there are 2 kg of molecular hydrogen in 1 kmol of H2.
Similarly, there are 32 kg of molecular oxygen in 1 kmol of O2, and 28 kg
of molecular nitrogen in 1 kmol of N2. We shall always use kilomoles and
kilograms in our calculations. Sometimes the term molecular (or atomic)
weight is used, rather than molecular mass, but the latter is correct.

Ideal Gas Law: The absolute pressure P of n kilomoles of gas contained in
a volume V is related to the absolute temperature T by

where R = 8314.472 J/kmol · K (or 8.314 5 J/kmol · K when n is the number



of moles) is called the universal gas constant or the molar gas constant. If
the volume contains m kilograms of gas that has a molecular (or atomic)
mass M, then n = m/M. The units of M are kg/kmol.

We can reformulate the Ideal Gas Law and in so doing introduce a
constant that is more fundamental than R, namely, the Boltzmann Constant
(kB). The number of molecules in a mole of a substance is NA = 6.022 ×
1023, Avogadro’s number. Let N be the number of molecules in a sample of
gas, and so N = n/NA. The gas law then becomes

PV = nRT = (n/NA) RT

And defining kB = R/NA = 1.38066 × 10−23 J/K, we get

In this chapter both temperature and pressure are absolute; forgetting that
is the most common cause of calculational error.

Special Cases of the Ideal Gas Law, obtained by holding all but two of its
parameters constant, are

Absolute Zero: With n and P constant (Charles’ Law), the volume of an
ideal gas decreases linearly with T and (if the gas remained ideal) would
reach zero at T = 0 K. Similarly, with n and V constant (Gay-Lussac’s Law),
the pressure would decrease to zero with the temperature. This unique
temperature, at which P and V would reach zero, is called absolute zero.
It’s the same 0 K introduced in the previous chapter.

Standard Conditions or Standard Temperature and Pressure (S.T.P.)
are defined to be

Under standard conditions, 1 kmol of ideal gas occupies a volume of 22.4



m3. Therefore, at S.T.P., 2 kg of H2 occupies the same volume as 32 kg of
O2 or 28 kg of N2, namely 22.4 m3.

Dalton’s Law of Partial Pressures: Define the partial pressure of one
component of a gas mixture to be the pressure that component gas would
exert if it alone occupied the entire volume. Then, the total pressure of a
mixture of ideal, nonreactive gases is the sum of the partial pressures of the
component gases. Which makes sense, since each gas is effectively
“unaware” of the presence of any of the other gases.

Gas-Law Problems involving a change of conditions from (P1, V1, T1) to
(P2, V2, T2) are usually easily solved by writing the gas law as

Remember that’s absolute temperature and absolute pressure. Notice that
pressure, because it appears on both sides of the equation, can be expressed
in any units you like.

PROBLEM SOLVING GUIDE

In this chapter, you must always use absolute pressure and absolute
temperature. When you enter R in J/kmol · K into the Ideal Gas Law, n is
then the number of kilomoles. Similarly when R is entered in J/mol · K, you
must take n to be the number of moles. It will be helpful to know that 1.000
liter = 1000 cm3 = 1.000 × 10−3 m3.

SOLVED PROBLEMS

16.1 [II]   A mass of oxygen occupies 0.020 0 m3 at atmospheric pressure,
101 kPa, and 5.0 °C. Determine its volume if its pressure is
increased to 108 kPa while its temperature is changed to 30 °C.

From



But T1 = 5 + 273 = 278 K and T2 = 30 + 273 = 303 K;
consequently,

16.2 [II]   On a day when atmospheric pressure is 76 cmHg, the pressure
gauge on a tank reads the pressure inside to be 400 cmHg. The gas
in the tank has a temperature of 9 °C. If the tank is heated to 31 °C
by the Sun, and if no gas exits from it, what will the pressure
gauge read?

But gauges on tanks usually read the difference in pressure
between inside and outside; this is called the gauge pressure.
Therefore,

P1 = 76 cmHg + 400 cmHg = 476 cmHg

Also, V1 = V2. We then have

The gauge will read 513 cmHg − 76 cmHg = 437 cmHg.

16.3 [II]  The gauge pressure in a car tire is 305 kPa when its temperature is
15 °C. After running at high speed, the tire has heated up and its
gauge pressure is 360 kPa. What is then the temperature of the gas
in the tire? Assume atmospheric pressure to be 101 kPa.

Being careful to use only absolute temperature and absolute
pressures:



The final temperature of the tire is 327 − 273 = 54 °C.

16.4 [II]  Gas at room temperature and pressure is confined to a cylinder by a
piston. The piston is now pushed in so as to reduce the volume to
one-eighth of its original value. After the gas temperature has
returned to room temperature, what is the gauge pressure of the
gas in kPa? Local atmospheric pressure is 740 mm of mercury.

Remember that you can work in any pressure units you like. Here
T1 = T2, P1 = 740 mmHg, and V2 = V1/8. Substitution provides

P2 = (740 mmHg)(8)(1) = 5920 mmHg

Gauge pressure is the difference between actual and atmospheric
pressure. Therefore,

Gauge pressure = 5920 mmHg − 740 mmHg = 5180 mmHg

Since 760 mmHg = 101 kPa, the gauge reading in kPa is

16.5 [II]  An ideal gas has a volume of exactly 1 liter at 1.00 atm and -20 °C.
To how many atmospheres of pressure must it be subjected in
order to be compressed to 0.500 liter when the temperature is 40
°C?



16.6 [II]  A certain mass of hydrogen gas occupies 370 mL at 16 °C and 150
kPa. Find its volume at −21 °C and 420 kPa.

16.7 [II]  The density of nitrogen is 1.25 kg/m3 at S.T.P. Determine the
density of nitrogen at 42 °C and 730 mm of mercury.

Since ρ = m/V, we have V1 = m/ρ1 and V2 = m/ρ2 for a given mass of
gas under two sets of conditions. Then

Since S.T.P. are 760 mmHg and 273 K,

Notice that pressures in mmHg can be used here because the units
cancel in the ratio P2/P1.

16.8 [II]  A 3.0-liter tank contains oxygen gas at 20 °C and a gauge pressure
of 25 × 105 Pa. What mass of oxygen is in the tank? The
molecular mass of oxygen gas is 32 kg/kmol. Assume atmospheric
pressure to be 1 × 105 Pa.

The absolute pressure of the gas is

P = (Gauge pressure) + (Atmospheric pressure) = (25 + 1) × 105 N/m2 = 26
× 105 N/m2

From the Ideal Gas Law, with M = 32 kg/kmol,



Solving this equation gives m, the mass of gas in the tank, as 0.10
kg.

16.9 [II]  Determine the volume occupied by 4.0 g of oxygen (M = 32
kg/kmol) at S.T.P.

Method 1

Use the Ideal Gas Law directly:

Method 2

Under S.T.P., 1 kmol occupies 22.4 m3. Therefore, 32 kg occupies
22.4 m3, and so 4 g occupies

16.10 [II]  A 2.0-mg droplet of liquid nitrogen is present in a 30 mL tube as
it is sealed off at very low temperature. What will be the nitrogen
pressure in the tube when it is warmed to 20 °C? Express your
answer in atmospheres. (M for nitrogen is 28 kg/kmol.)

16.11 [II]  A tank of volume 590 liters contains oxygen at 20 °C and 5.0 atm
pressure. Calculate the mass of oxygen in the tank. M = 32



kg/kmol for oxygen.

16.12 [II]  At 18 °C and 765 mmHg, 1.29 liters of an ideal gas has a mass of
2.71 g. Compute the molecular mass of the gas.

16.13 [II]  Compute the volume of 8.0 g of helium (M = 4.0 kg/kmol) at 15
°C and 480 mmHg.

16.14 [II]  Find the density of methane (M = 16 kg/kmol) at 20 °C and 5.0
atm.

16.15 [II]  A fish emits a 2.0-mm3 bubble at a depth of 15 m in a lake. Find
the volume of the bubble as it reaches the surface. Assume its
temperature does not change.

The absolute pressure in the bubble at a depth h is

P = ρgh + Atmospheric pressure

where ρ = 1000 kg/m3 and atmospheric pressure is about 100 kPa.
At 15 m,

P1 = (1000 kg/m3)(9.8 m/s3)(15 m) + 100 kPa = 247 kPa

and at the surface, P2 = 100 kPa. Following the usual procedure,



16.16 [II]  A 15-cm-long test tube of uniform bore is lowered, open-end
down, into a freshwater lake. How far below the surface of the
lake must the water level be in the tube if one-third of the tube is
to be filled with water?

Let h be the depth of the water in the tube below the lake’s
surface. The air pressure P2 in the tube at depth h must equal
atmospheric pressure Pa plus the pressure of water at that depth:

P2 = Pa + ρgh

The Ideal Gas Law gives us the value of P2 as

Then, from the relation between P2 and h,

where atmospheric pressure has been taken as 100 kPa.

16.17 [II]  A tank contains 18 kg of N2 gas (M = 28 kg/kmol) at a pressure of
4.50 atm. How much H2 gas (M = 2.0 kg/kmol) at 3.50 atm would
the same tank contain?

Write the Ideal Gas Law twice, once for each gas:

PNV = nN RT and PHV = nH RT

Division of one equation by the other eliminates V, R, and T:



16.18 [II]  In a gaseous mixture at 20 °C the partial pressures of the
components are as follows: hydrogen, 200 mmHg; carbon dioxide,
150 mmHg; methane, 320 mmHg; ethylene, 105 mmHg. What are
(a) the total pressure of the mixture and (b) the mass fraction of
hydrogen? (MH = 2.0 kg/kmol, MCO2 = 44 kg/kmol, Mmethane = 16
kg/kmol, Methylene = 30 kg/kmol.)

(a) According to Dalton’s Law,

Total pressure = Sum of partial pressures = 200 mmHg + 150
mmHg + 320 mmHg + 105 mmHg

= 775 mmHg

(b) From the Ideal Gas Law, m = M(PV/RT). The mass of
hydrogen gas present is

SUPPLEMENTARY PROBLEMS

16.19 [I]  An ideal gas is in a chamber at a pressure of 2.00 MPa and has a
volume of 20.0 liters when at a temperature of 298.15 K.



Determine the number of moles of gas in the chamber.

16.20 [I]  Given that one mole of hydrogen molecules—assumed to be an
ideal gas—has a mass of 2.02 × 10−3 kg, determine the mass
density of the gas in the previous example.

16.21 [I]  A sealed tank having a volume of 25.0 × 10−3 m3 contains 0.56 kg
of nitrogen (N2). How many kilomoles of gas are in the tank?
[Hint: The atomic mass of the molecule is 28.]

16.22 [I]  If the absolute pressure in the chamber in the previous problem is
52.0 × 105 N/m2, find the temperature of the gas. [Hint: Use the
Ideal Gas Law.]

16.23 [I]  A 50.0-liter cylinder is open to the atmosphere. It is then sealed
with a piston and compressed down to 10.0 liters. If the
temperature is kept constant, what will be the new absolute
pressure? [Hint: Use Boyle’s Law.]

16.24 [I]  A 6.00-m3 cylinder filled with oxygen at an absolute pressure of
2.00 atm is sealed with a movable piston. The chamber is then
compressed down to 3.0 liters. If the temperature is kept constant,
what will be the new absolute pressure? [Hint: Use Boyle’s Law.]

16.25 [I]  Imagine a cylinder containing 0.500 m3 of gas sealed in with a
movable piston. If the gas in the cylinder is heated so that its
temperature goes from 250 K to 500 K keeping the pressure
constant, if the volume changes, what will its new value be? [Hint:
Use Charles’ Law.]

16.26 [I]  A gas is sealed into a closed container. The gas is heated so that its
temperature rises from 100 °C to 200 °C. If the initial absolute
pressure in the container was 2.00 atm, what will its new value be?

16.27 [I]  A given mass of an ideal gas occupies a volume of 4.00 m3 at 758
mmHg. Compute its volume at 635 mmHg if the temperature
remains unchanged.



16.28 [I]  A mass of ideal gas occupies 38 mL at 20 °C. If its pressure is held
constant, what volume does it occupy at a temperature of 45 °C?

16.29 [I]  On a day when atmospheric pressure is 75.83 cmHg, a pressure
gauge on a tank of gas reads a pressure of 258.5 cmHg. What is
the absolute pressure (in atmospheres and kPa) of the gas in the
tank?

16.30 [II] A tank of ideal gas is sealed off at 20 °C and 1.00 atm pressure.
What will be the pressure (in kPa and mmHg) in the tank if the gas
temperature is decreased to −35 °C?

16.31 [II] Given 1000 mL of helium at 15 °C and 763 mmHg, determine its
volume at −6 °C and 420 mmHg.

16.32 [II] One kilomole of ideal gas occupies 22.4 m3 at 0 °C and 1 atm. (a)
What pressure is required to compress 1.00 kmol into a 5.00 m3

container at 100 °C? (b) If 1.00 kmol was to be sealed in a 5.00 m3

tank that could withstand a gauge pressure of only 3.00 atm, what
would be the maximum temperature of the gas if the tank was not
to burst?

16.33 [II] Air is trapped in the sealed lower end of a capillary tube by a
mercury column as shown in Fig. 16-1. The top of the tube is
open. The temperature is 14 °C, and atmospheric pressure is 740
mmHg. What length would the trapped air column have if the
temperature were 30 °C and atmospheric pressure were 760
mmHg?

16.34 [II] Air is trapped in the sealed lower part of the vertical capillary tube
shown in Fig. 16-1 by an 8.0-cm-long mercury column. The top is
open, and the system is at equilibrium. What will be the length of
the trapped air column if the tube is now tilted so it makes an
angle of 65° to the vertical? Take Pa = 76 cmHg.



Fig. 16-1

16.35 [II] On a day when the barometer reads 75.23 cm, a reaction vessel
holds 250 mL of ideal gas at 20.0 °C. An oil manometer (ρ = 810
kg/m3) reads the pressure in the vessel to be 41.0 cm of oil and
below atmospheric pressure. What volume will the gas occupy
under S.T.P.?

16.36 [II] A 5000-cm3 tank contains an ideal gas (M = 40 kg/kmol) at a
gauge pressure of 530 kPa and a temperature of 25 °C. Assuming
atmospheric pressure to be 100 kPa, what mass of gas is in the
tank?

16.37 [II] The pressure of air in a reasonably good vacuum might be 2.0 ×
10−5 mmHg. What mass of air exists in a 250 mL volume at this
pressure and 25 °C? Take M = 28 kg/kmol for air.

16.38 [II] What volume will 1.216 g of SO2 gas (M = 64.1 kg/kmol) occupy
at 18.0 °C and 755 mmHg if it acts like an ideal gas?

16.39 [II] Compute the density of H2S gas (M = 34.1 kg/kmol) at 27 °C and
2.00 atm, assuming it to be ideal.

16.40 [II] A 30-mL tube contains 0.25 g of water vapor (M = 18 kg/kmol) at
a temperature of 340 °C. Assuming the gas to be ideal, what is its
pressure?

16.41 [II] One method for estimating the temperature at the center of the Sun



is based on the Ideal Gas Law. If the center is assumed to consist
of gases whose average M is 0.70 kg/kmol, and if the density and
pressure are 90 × 103 kg/m3 and 1.4 × 1011 atm, respectively,
calculate the temperature.

16.42 [II] A 500-mL sealed flask contains nitrogen at a pressure of 76.00
cmHg. A tiny glass tube lies at the bottom of the flask. Its volume
is 0.50 mL and it contains hydrogen gas at a pressure of 4.5 atm.
Suppose the glass tube is now broken so that the hydrogen fills the
flask. What is the new pressure in the flask?

16.43 [II] As shown in Fig. 16-2, two flasks are connected by an initially
closed stopcock. One flask contains krypton gas at 500 mmHg,
while the other contains helium at 950 mmHg. The stopcock is
now opened so that the gases mix. What is the final pressure in the
system? Assume constant temperature.

Fig. 16-2

16.44 [II] An air bubble of volume V0 is released near the bottom of a lake at
a depth of 11.0 m. What will be its new volume at the surface?
Assume its temperature to be 4.0 °C at the release point and 12 °C
at the surface. The water has a density of 1000 kg/m3, and
atmospheric pressure is 75 cmHg.

16.45 [II] A cylindrical diving bell (a vertical cylinder with open bottom end
and closed top end) 12.0 m high is lowered in a lake until water
within the bell rises 8.0 m from the bottom end. Determine the
distance from the top of the bell to the surface of the lake.
(Atmospheric pressure = 1.00 atm.)



ANSWERS TO SUPPLEMENTARY PROBLEMS

16.19 [I]    16.1 mol

16.20 [I]    1.63 kg/m3

16.21 [I]    0.020 kmol

16.22 [I]    7.8 × 102 K

16.23 [I]    5.00 atm

16.24 [I]    4.0 × 103 atm

16.25 [I]    1.00 m3

16.26 [I]    2.54 atm

16.27 [I]    4.77 m3

16.28 [I]    41 mL

16.29 [I]    334.3 cmHg = 4.398 atm = 445.6 kPa

16.30 [II]   82 kPa = 6.2 × 102 mmHg

16.31 [II]   1.68 × 103 mL

16.32 [II]   (a) 6.12 atm; (b) −30 °C

16.33 [II]   12.4 cm

16.34 [II]   0.13 m

16.35 [II]   233 mL

16.36 [II]   0.051 kg



16.37 [II]   7.5 × 10−12 kg

16.38 [II]   457 mL

16.39 [II]   2.76 kg/m3

16.40 [II]   2.4 MPa

16.41 [II]   1.3 × 107 K

16.42 [II]   76.34 cmHg

16.43 [II]   789 mmHg

16.44 [II]   2.1 V0

16.45 [II]   20.6 m − 4.0 m = 16.6 m



Kinetic Theory

The Kinetic Theory considers matter to be composed of discrete tiny
particles (atoms and/or molecules) moving continuously. In a gas, the
molecules are in random motion with a wide distribution of speeds ranging
from zero to very large values.

Avogadro’s Number (NA) is the number of particles (molecules or atoms)
in 1 kmol of any substance. For all substances,

As examples, M = 2 kg/kmol for H2 and M = 32 kg/kmol for O2. Therefore,
2 kg of H2 and 32 kg of O2 each contain 6.02 × 1026 molecules.

The Mass of a Molecule (or atom) can be found from the molecular (or
atomic) mass M of the substance and Avogadro’s number NA. Since M kg of
a substance contains NA particles, the mass m0 of one particle is given by

The Average Translational Kinetic Energy of a gas molecule is 3kBT/2,
where T is the absolute temperature of the gas and kB = R/NA = 1.3806504 ×
10−23 J/K is Boltzmann’s constant. In other words, for a molecule of mass
m0,

Note that Boltzmann’s constant is also represented as k (with no subscript)



in the literature. It is one of a handful of what are known as fundamental
constants.

The Root Mean Square Speed (υrms) of a gas molecule is the square root
of the average of υ2 for a molecule over a prolonged time. It is used because
molecules can move in all directions and their scalar velocities can be
positive or negative. Using υ2 to get the rms value removes this sign issue.
Equivalently, the average may be taken over all molecules of the gas at a
given instant. From the expression for the average kinetic energy, the rms
speed is

The Absolute Temperature (T) of an ideal gas has a meaning that is found
by solving . That equation leads to

The absolute temperature of an ideal gas is a measure of its average
translational kinetic energy (KE) per molecule.

The Pressure (P) of an ideal gas was given in Chapter 16 in the form PV =
(m/M)RT. Noticing that m = Nm0, where N is the number of molecules in the
volume V, and replacing T by the value determined above, leads to

Further, since Nm0/V = ρ, the density of the gas,

The Mean Free Path (m.f.p.) of a gas molecule is the average distance
such a molecule moves between collisions. For an ideal gas of spherical
molecules each with a radius b,



where N/V is the number of molecules per unit volume. See Table 17-1.

TABLE 17-1
Molecular parameters at STP

PROBLEM SOLVING GUIDE

In this chapter, you must always use absolute pressure and absolute
temperature. Make sure your answers are realistic; if it’s appropriate for the
particular problem, compare your results with those of Table 17-1.

SOLVED PROBLEMS

17.1 [I]   Ordinary nitrogen gas consists of molecules of N2. Find the mass of
one such molecule. The molecular mass is 28 kg/kmol.

17.2 [I]   Helium gas consists of separate He atoms rather than molecules.
How many helium atoms, He, are there in 2.0 g of helium? M =
4.0 kg/kmol for He.

Method 1

One kilomole of He is 4.0 kg, and it contains NA atoms. But 2.0 g
is equivalent to



of helium. Therefore,

Method 2

The mass of a helium atom is

here,

17.3 [II]  A droplet of mercury has a radius of 0.50 mm. How many mercury
atoms are in the droplet? For Hg, M = 202 kg/kmol and ρ = 13 600
kg/m3.

The volume of the droplet is

The mass of the droplet is

The mass of a mercury atom is

The number of atoms in the droplet is then



17.4 [II] How many molecules are there in 70 mL of benzene? For benzene,
ρ = 0.88 g/cm3 and M = 78 kg/kmol.

Remember that 1 g/cm3 = 1000 kg/m3 and so here ρ = 880 kg/m3.

17.5 [I]   Find the rms speed of a nitrogen molecule (M = 28 kg/kmol.mml) in
air at 0 °C.

We know that 

17.6 [II]  Suppose a particular gas molecule at the surface of the Earth
happens to have the rms speed for that gas at exactly 0 °C. If it
were to go straight up without colliding with other molecules, how
high would it rise? Assume g is constant over the trajectory.

The molecule’s KE is initially

The molecule will rise until its KE has been changed to PEG.
Therefore, calling the height to which it rises h,

where m0 is in kg. The height varies inversely with the mass of the



molecule. For an N2 molecule, m0 = 4.65 × 10−26 kg (Problem
17.5), and in this case h turns out to be 12.4 km.

17.7 [I]   Air at room temperature has a density of about 1.29 kg/m3.
Assuming it to be entirely one gas, find υrms for its molecules.

where atmospheric pressure was assumed to be 100 kPa.

17.8 [I]   Find the translational kinetic energy of one gram mole of any ideal
gas at 0 °C.

For an ideal gas, , which is the KE of each molecule.
One gram mole contains NA × 10−3 molecules. Hence, the total
KE per mole is

17.9 [II]  There is about one hydrogen atom per cm3 in outer space, where
the temperature (in the shade) is about 3.5 K. Find the rms speed
of these atoms and the pressure they exert.

Keeping in mind that kBNA = R and that m0 = M/NA,

where M for hydrogen is 1.0 kg/kmol and T = 3.5 K. We can now
use  to find the pressure. The mass m0 of a hydrogen
atom is (1.0 kg / kmol) / NA. Since 1 m3 = 106 cm3 there are N =
106 atoms/m3 and



17.10 [I] Find the following ratios for hydrogen (M = 2.0 kg/kmol) and
nitrogen (M = 28 kg/kmol) gases at the same temperature: (a)
(KE)H/(KE)N and (b) (rms speed)H/(rms speed)N.

(a) The average translational KE of a molecule, , depends
only on temperature. Therefore, the ratio (KE)H/(KE)N = 1.

17.11 [II] Certain ideal gas molecules behave like spheres of radius 3.0 ×
10−10 m. Find the mean free path of these molecules under S.T.P.

Method 1

We know that at S.T.P. 1.00 kmol of substance occupies 22.4 m3.
The number of molecules per unit volume, N/V, can be found
from the fact that in 22.4 m3 there are NA = 6.02 × 1026

molecules. The mean free path is given by

Method 2

Because M = m0NA = m0(R/kB) and m = Nm0,

We then use the mean free path equation as in method 1.

17.12 [II] At what pressure will the mean free path be 50 cm for spherical
molecules of radius 3.0 × 10−10 m? Assume an ideal gas at 20 °C.



From the expression for the mean free path,

Combining this with the Ideal Gas Law in the form PV = NkBT
(see Problem 17.11) yields

SUPPLEMENTARY PROBLEMS

17.13 [I] Find the mass of a neon atom. The atomic mass of neon is 20.2
kg/kmol.

17.14 [II] A typical polymer molecule in polyethylene might have a
molecular mass of 15 × 103. (a) What is the mass in kilograms of
such a molecule? (b) How many such molecules would make up
2 g of polymer?

17.15 [II] A certain strain of tobacco mosaic virus has M = 4.0 × 107

kg/kmol. How many molecules of the virus are present in 1.0 mL
of a solution that contains 0.10 mg of virus per mL?

17.16 [I] If the Celsius temperature of a gas quadruples, does υrms double?
Explain.

17.17 [I] What happens to the average kinetic energy of a gas molecule if the
absolute temperature is tripled?

17.18 [I] The absolute temperature of a sample of gas in a chamber is
doubled. What then happens to the root-mean-square speed of the
molecules?

17.19 [I] Let μ, which is called the molar mass, stand for the mass of 1 mole
of gas expressed in kilograms, so that it has the units of kg/mol, as
opposed to M in the previous chapter, which has the units of
kg/mol. Thus, for example, for the O2 molecule μ is 32 × 10−3



kg/mol. Show that υrms = (3RT/μ)1/2.

17.20 [I] In the previous problem, what is the correct numerical value of R,
and what are its units? [Hint: Reread the material associated with
Eq. (16.1).]

17.21 [I] Calculate the rms speed of CO2 molecules at a temperature of 310
K, assuming they behave as an ideal gas. [Hint: First show that μ =
44.0 × 10–3 kg/mol and then look at Problem 17.22.]

17.22 [I] Write an expression for the total kinetic energy of a gas containing
N molecules, in terms of Boltzmann’s Constant. Ignore rotational
KE. Show that your answer is equivalent to (3/2)nRT. [Hint: Look
at Eq. (16.2).]

17.23 [I] Determine the kinetic energy in 1.00 mole of any gas at a
temperature of 300 K. Notice that the total kinetic energy is
independent of the type of molecule as long as it behaves as does
an ideal gas.

17.24 [I] Calculate the root-mean-square speed of an oxygen molecule at
room temperature (take that to be 23 °C). Is your answer
reasonable? [Hint: Consult Table 17-1 for the mass.]

17.25 [II] An old electronic vacuum tube was sealed off during manufacture
at a pressure of 1.2 × 10−7 mmHg at 27 °C. Its volume was 100
cm3. (a) What was the pressure in the tube (in Pa)? (b) How
many gas molecules remained in the tube?

17.26 [II] The pressure of helium gas in a tube is 0.200 mmHg. If the
temperature of the gas is 20 °C, what is the density of the gas?
(Use MHe = 4.0 kg/kmol.)

17.27 [II] At what temperature will the molecules of an ideal gas have twice
the rms speed they have at 20 °C?

17.28 [II] An object must have a speed of at least 11.2 km/s to escape from
the Earth’s gravitational field. At what temperature will υrms for
H2 molecules equal the escape speed? Repeat for N2 molecules.
(MH2 = 2.0 kg/kmol and MN2 = 28 kg/kmol.)

17.29 [II] In a certain region of outer space there are an average of only five
molecules per cm3. The temperature there is about 3 K. What is



the average pressure of this very dilute gas?
17.30 [II] A cube of aluminum has a volume of 1.0 cm3 and a mass of 2.7 g.

(a) How many aluminum atoms are there in the cube? (b) How
large a volume is associated with each atom? (c) If each atom
were a cube, what would be its edge length? M = 108 kg/kmol for
aluminum.

17.31 [II] The rms speed of nitrogen molecules in the air at S.T.P. is about
490 m/s. Find their mean free path and the average time between
collisions. The radius of a nitrogen molecule can be taken to be
2.0 × 10−10 m.

17.32 [II] What is the mean free path of a gas molecule (radius 2.5 × 10−10

m) in an ideal gas at 500 °C when the pressure is 7.0 × 10−6

mmHg?

ANSWERS TO SUPPLEMENTARY PROBLEMS

17.13 [I] 3.36 × 10−26 kg
17.14 [II] (a) 2.5 × 10−23 kg; (b) 8 × 1019

17.15 [II] 1.5 × 1012

17.16 [I] No; υrms depends on absolute temperature.

17.17 [I] The average KE triples.
17.18 [I] The root-mean-square speed increases by a multiplicative factor of 

.
17.20 [I] R = 8.314 J/mol · K
17.21 [I] 419 m/s
17.22 [I] KEtotal = (3/2)NkBT and NkB = nR

17.23 [I] 3.74 kJ
17.24 [I] 4.8 × 102 m/s; yes, it’s a little higher than that given in Table 17-1.
17.25 [II] (a) 1.6 × 10−5 Pa; (b) 3.8 × 1011



17.26 [II] 4.4 × 10−5 kg/m3

17.27 [II] 1170 K ≈ 900 °C
17.28 [II] 1.0 × 104 K; 1.4 × 105 K
17.29 [II] 2 × 10−16 Pa
17.30 [II] (a) 1.5 × 1022; (b) 6.6 × 10−29 m3; (c) 4.0 × 10−10 m
17.31 [II] 5.2 × 10−8 m, 1.1 × 10−10 s
17.32 [II] 10 m



Heat Quantities

Thermal Energy is the random kinetic energy of the particles (usually
electrons, ions, atoms, and molecules) composing a system.

Heat (Q) is thermal energy in transit from a system (or aggregate of
electrons, ions, and atoms) at one temperature to a system that is in contact
with it but is at a lower temperature. Its SI unit is the joule. Other units used
for heat are the calorie (1 cal = 4.185 8 J) and the British thermal unit (1 Btu
= 1054 J). The “Calorie” used by nutritionists is called the “large calorie”
and is actually a kilocalorie (1 Cal = 1 kcal = 103 cal = 4185.8 J where 1 J =
0.238 9 cal).

The Specific Heat (or specific heat capacity, c) of a substance is the
quantity of heat required to change the temperature of a unit mass of the
substance by one degree Celsius or equivalently by one kelvin.
If a quantity of heat ∆Q is required to produce a temperature change ∆T in a
mass m of substance, then the specific heat is

In the SI, c has the unit J/kg·K, which is equivalent to J/kg·°C. Specific
heats are often tabulated in kJ/kg·K; be careful with these units. Also widely
used is the unit cal/g·°C, where 1 cal/g·°C, where 1 cal/g·°C = 4.186 J/kg·
°C = 4.186 kJ/kg.K = 1 kcal/kg·K.
Each substance has a characteristic value of specific heat, which varies
slightly with temperature. For water, c = 4180 J/kg·°C = 1.00 cal/g·°C (see
Table 18-1).



The Heat Gained (or Lost) by a body (whose phase does not change) as it
undergoes a temperature change ∆T, is given by

A common situation involves combining two objects at different
temperatures. An amount of heat will then flow out of the hotter (Qout) into
the cooler (Qin). Barring losses, these are numerically equal, but since one
involves a drop in temperature and the other a rise in temperature, there
must be a sign difference. Hence we take heat-in to be positive and heat-out
to be negative, whereupon

When we calculate Qout, it will be negative because ΔT is negative, whereas
Qin will be positive because ΔT is positive.

The Heat of Fusion (Lf) of a crystalline solid is the quantity of heat
required to melt a unit mass of the solid at constant temperature. It is also
equal to the quantity of heat given off by a unit mass of the molten solid as
it crystallizes at this same temperature. The heat of fusion of water at 0 °C is
about 335 kJ/kg or 80 cal/g.

In general the heat of fusion (see Table 18-2) is expressible as

The Heat of Vaporization (Lυ) of a liquid is the quantity of heat required to
vaporize a unit mass of the liquid at constant temperature. For water at 100
°C, Lυ is about 2.26 MJ/kg or 540 cal/g.

In general the heat of vaporization (see Table 18-2) is expressible as

The Heat of Sublimation of a solid substance is the quantity of heat
required to convert a unit mass of the substance from the solid to the
gaseous state at constant temperature.

TABLE 18-1
Specific Heat Capacity for Some Materials*



TABLE 18-2
Approximate Heats of Fusion and Vaporization



Calorimetry Problems involve the sharing of thermal energy among
initially hot objects and cold objects. Since energy must be conserved, one
can write the following equation:

Sum of heat changes for all object = 0

Here the heat flowing out of the high temperature system (ΔQout<0)
numerically equals the heat flowing into the low temperature system
(ΔQin>0) and so the sum is zero. This, of course, assumes that no thermal
energy is otherwise lost from the system.

Absolute Humidity is the mass of water vapor present per unit volume of
gas (usually the atmosphere). Typical units are kg/m3 and g/cm3.

Relative Humidity (R.H.) is the ratio obtained by dividing the mass of
water vapor per unit volume present in the air by the mass of water vapor
per unit volume present in saturated air at the same temperature. When it is
expressed in percent, the ratio is multiplied by 100.

Dew Point: Cooler air at saturation contains less water than warmer air does
at saturation. When air is cooled, it eventually reaches a temperature at
which it is saturated. This temperature is called the dew point. At
temperatures lower than this, water condenses out of the air.

PROBLEM SOLVING GUIDE

Keep in mind that 1 mL = 1 cm3 = 1 × 10–6 m3. Be especially careful with
units; the k in kJ (kilojoules) often tends to get lost. Notice that the specific
heats of steam, water, and ice are all different. Remember that 0 K =
−273.15 °C.



SOLVED PROBLEMS

18.1 [I]   (a) How much heat is required to raise the temperature of 250 mL
of water from 20.0 °C to 35.0 °C? (b) How much heat is lost by
the water as it cools back down to 20.0 °C?

Since 250 mL of water has a mass of 250 g, and since c = 1.00
cal/g·°C for water, we have

(a) ∆Q = mc ∆T = (250 g)(1.00 cal/g·°C)(15.0 °C) = 3.75 × 103 cal
= 15.7 kJ

(b) ∆Q = mc ∆T = (250 g)(1.00 cal/g·°C)(−15.0 °C) = −3.75 × 103

cal = −15.7 kJ
Notice that heat-in (i.e., the heat that enters an object) is taken
to be positive, whereas heat-out (i.e., the heat that leaves an
object) is taken to be negative.

Alternative Method

Let’s redo (a) in SI units: 250 mL = 250 cm3 = 250 × 10–6 m3, and
c for water is 4.186 kJ/kg·K; hence

ΔQ = mc ΔT = (0.250 kg)(4.186 kJ/kg·K)(15.0 K) = 15.7 kJ

18.2 [I]   How much heat does 25 g of a metal give off as it cools from 100
°C to 20 °C if c = 880 J/kg·°C.

∆Q = mc ∆T = (0.025 kg)(880 J/kg·°C)(−80 °C) = −1.76 kJ

or to two significant figures, −1.8 kJ.

18.3 [I]   A certain amount of heat is added to a mass of aluminum (c = 0.21
cal/g·°C), and its temperature is raised 57 °C. Suppose that the
same amount of heat is added to the same mass of copper (c =
0.093 cal/g·°C). How much does the temperature of the copper
rise?



Because ∆Q is the same for both, we have

Alternative Method
Let’s redo this problem in SI units. Using Table 18-1.

ΔTCu = (0.90/0.39)(57 K) = 1.3 × 102 K

Happily this is the same temperature change.

18.4 [I]   Two identical metal plates (mass = m, specific heat = c) have
different temperatures; one is at 20 °C, and the other is at 90 °C.
They are placed in good thermal contact. What is their final
temperature?

Because the plates are identical, we would guess the final
temperature to be midway between 20 °C and 90 °C, namely 55
°C. This is correct, but let us show it mathematically. From the
law of conservation of energy, the heat lost by one plate must
equal the heat gained by the other. Thus, the total heat change of
the system is zero. In equation form,

which is short-hand for mhotchotΔThot + mcoldccoldΔTcold = 0.

Be careful about ∆T: It is the final temperature (which we denote
by Tf in this case) minus the initial temperature. The above
equation thus becomes

mc(Tf − 90 °C) + mc(Tf − 20 °C) = 0

After canceling mc from each term, solve the equation and find Tf
= 55 °C, the expected answer.

Alternative Method



Notice that this analysis is identical to starting with Eq. (18.3);
namely,

Qin = −Qout

inasmuch as Qin + Qout = 0.

18.5 [II] A thermos bottle contains 250 g of coffee at 90 °C. To this is added
20 g of milk at 5 °C. After equilibrium is established, what is the
temperature of the liquid? Assume no heat loss to the thermos
bottle.

Water, coffee, and milk all have the same value of c, 1.00 cal/g·
°C. The law of energy conservation allows us to write

In other words, the heat lost by the coffee equals the heat gained
by the milk. If the final temperature of the liquid is Tf, then

Substituting and canceling c yields

Solving this equation leads to Tf = 84°C.

18.6 [II]  A thermos bottle contains 150 g of water at 4 °C. Into this is placed
90 g of metal at 100 °C. After equilibrium is established, the
temperature of the water and metal is 21 °C. What is the specific
heat of the metal? Assume no heat loss to the thermos bottle.

Alternative Method



Solving yields cmental = 0.36 cal/g·°C. Notice that ΔTmetal = 21 −
90 = −79 °C.

18.7 [II]  A 200-g copper calorimeter can contains 150 g of oil at 20 °C. To
the oil is added 80 g of aluminum at 300 °C. What will be the
temperature of the system after equilibrium is established? cCu =
0.093 cal/g·°C, cAl = 0.21 cal/g·°C, coil = 0.37 cal/g·°C.

With given values substituted, this becomes

Solving this equation yields Tf = 72 °C.

18.8 [II]  Exactly 3.0 g of carbon was burned to CO2 in a copper calorimeter.
The mass of the calorimeter is 1500 g, and there is 2000 g of water
in the calorimeter. The initial temperature was 20 °C, and the final
temperature is 31 °C. Calculate the heat given off per gram of
carbon. cCu = 0.093 cal/g·°C. Neglect the small heat capacity of
the carbon and carbon dioxide.

Conservation of energy tells us that

Therefore, the heat given off by one gram of carbon as it burns is



18.9 [II]  Determine the temperature Tf that results when 150 g of ice at 0 °C
is mixed with 300 g of water at 50.0 °C.

The water is hotter and loses heat to the ice, which first melts and
then rises in temperature. The amount of heat needed to melt the
ice is Qf = miceLf, where from Table 18-2, Lf = 333.7 kJ/kg. Thus

and Tf = 279.8 K, or to two figures 0.28 × 102 K.

Alternative Method
From energy conservation,

18.10 [II]  How much heat is given up when 20 g of steam at 100 °C is
condensed and cooled to 20 °C?

The steam loses an amount of heat to condense into water at 100
°C and more for the water at 100 °C to drop in temperature to 20
°C. From Table 18-2, Lυ = 2259 kJ/kg. Thus the heat that must be
removed is

and Q = −51.9 kJ, or to two figures −52 kJ.

Alternative Method



18.11 [II] A 20-g piece of aluminum (c = 0.21 cal/g·°C) at 90 °C is dropped
into a cavity in a large block of ice at 0 °C. How much ice does
the aluminum melt?

from which m = 4.7 g is the quantity of ice melted.

18.12 [II]  In a calorimeter can (which behaves thermally as if it were
equivalent to 40 g of water) are 200 g of water and 50 g of ice, all
at exactly 0 °C. Into this is poured 30 g of water at 90 °C. What
will be the final condition of the system?

Let us start by assuming (perhaps incorrectly) that the final
temperature is Tf > 0 °C. Then

Solving gives Tf = −4.1 °C, contrary to our assumption that the
final temperature is above 0 °C. Apparently, not all the ice melts.
Therefore, Tf = 0 °C.

To find how much ice melts, we write

where m is the mass of ice that melts. Solving this equation yields
m = 34 g. The final system has 50 g − 34 g = 16 g of ice not
melted.

18.13 [I]  An electric heater that produces 900 W of power is used to
vaporize water. How much water at 100 °C can be changed to
steam at 100 °C in 3.00 min by the heater? (For water at 100 °C,
Lυ = 2.26 × 106 J/kg.)



The heater produces 900 J of heat energy per second. So the heat
produced in 3.00 min is

The heat required to vaporize a mass m of water is

Equating these two expressions for ∆Q and solving for m gives m
= 0.071 7 kg = 71.7 g as the mass of water vaporized.

18.14 [I] A 3.00-g bullet (c = 0.030 5 cal/g·°C = 128 J/kg·°C) moving at 180
m/s enters a bag of sand and stops. By what amount does the
temperature of the bullet change if all its KE becomes thermal
energy that is added to the bullet?

The bullet loses KE in the amount

This results in the addition of ∆Q = 48.6 J of thermal energy to the
bullet. Then, since ∆Q = mc ∆T, we can find ∆T for the bullet:

Notice that we had to use c in J/kg·°C, and not in cal/g·°C.

18.15 [I] Suppose a 60-kg person consumes 2500 Cal of food in one day. If
the entire heat equivalent of this food were retained by the
person’s body, how large a temperature change would it cause?
(For the body, c = 0.83 cal/g·°C.) Remember that 1 Cal = 1 kcal =
1000 cal.

The equivalent amount of heat added to the body in one day is

Then, by use of ∆Q = mc ∆T,



18.16 [II]  A thermometer in a 10 m × 8.0 m × 4.0 m room reads 22 °C and
a humidistat reads the R.H. to be 35 percent. What mass of water
vapor is in the room? Saturated air at 22 °C contains 19.33 g
H2O/m3.

from which mass/m3 = 6.77 × 10−3 kg/m3. But the room in
question has a volume of 10 m × 8.0 m × 4.0 m = 320 m3.
Therefore, the total mass of water in it is

18.17 [II] On a day when the temperature is 28 °C, moisture forms on the
outside of a glass of cold drink if the glass is at a temperature of
16 °C or lower. What is the R.H. on that day? Saturated air at 28
°C contains 26.93 g/m3 of water, while, at 16 °C, it contains
13.50 g/m3.

Dew forms at a temperature of 16 °C or lower, so the dew point is
16 °C. The air is saturated at that temperature and therefore
contains 13.50 g/m3. Then

18.18 [II] Outside air at 5 °C and 20 percent relative humidity is introduced
into a heating and air-conditioning plant where it is heated to 20
°C and its relative humidity is increased to a comfortable 50
percent. How many grams of water must be evaporated into a
cubic meter of outside air to accomplish this? Saturated air at 5
°C contains 6.8 g/m3 of water, and at 20 °C it contains 17.3 g/m3.



SUPPLEMENTARY PROBLEMS

18.19 [I] Victoria Falls on the Zambezi River is 108 m high, and 1088 m3 of
water pours over it every second. Assuming no loss in energy,
what is the rise in temperature of the water due to the drop? [Hint:
Think PE.]

18.20 [I] If 10.0 kg of steam at 100 °C is to be raised to 200 °C, how much
heat must be added?

18.21 [I] How much energy must be removed from a 10.0-kg block of
stainless steel to lower its temperature 50.0 °C?

18.22 [I] A 100-kg chunk of ice at −150 °C is to have its temperature raised
to −50.0 °C. How much energy must be added to it?

18.23 [I] How much heat will have to be added to a 20.0-kg block of silver at
960.8 °C in order to completely melt it? [Hint: Check out Table
18-2.]

18.24 [I] A molten 50.0-kg quantity of gold at 1063 °C is to be solidified
without changing its temperature. What must be done? [Hint:
Check out Table 18-2.]

18.25 [I] How many calories are required to heat each of the following from
15 °C to 65 °C? (a) 3.0 g of aluminum, (b) 5.0 g of Pyrex glass,
(c) 20 g of platinum. The specific heats, in cal/g·°C, for aluminum,
Pyrex, and platinum are 0.21, 0.20, and 0.032, respectively.

18.26 [I] When 5.0 g of a certain type of coal is burned, it raises the
temperature of 1000 mL of water from 10 °C to 47 °C. Calculate
the thermal energy produced per gram of coal. Neglect the small
heat capacity of the coal.

18.27 [II] Furnace oil has a heat of combustion of 44 MJ/kg. Assuming that
70 percent of the heat is useful, how many kilograms of oil are



required to raise the temperature of 2000 kg of water from 20 °C
to 99 °C?

18.28 [II] What will be the final temperature if 50 g of water at exactly 0 °C
is added to 250 g of water at 90 °C?

18.29 [II] A 50-g piece of metal at 95 °C is dropped into 250 g of water at
17.0 °C and warms it to 19.4 °C. What is the specific heat of the
metal?

18.30 [II] How long does it take a 2.50-W heater to boil away 400 g of
liquid helium at the temperature of its boiling point (4.2 K)? For
helium, Lυ = 5.0 cal/g.

18.31 [II] A 55-g copper calorimeter (c = 0.093 cal/g·°C) contains 250 g of
water at 18.0 °C. When 75 g of an alloy at 100 °C is dropped into
the calorimeter, the final resulting temperature is 20.4 °C. What is
the specific heat of the alloy?

18.32 [II] Determine the temperature that results when 1.0 kg of ice at
exactly 0 °C is mixed with 9.0 kg of water at 50 °C and no heat is
lost.

18.33 [II] How much heat is required to change 10 g of ice at exactly 0° C
to steam at 100° C?

18.34 [II] Ten kilograms of steam at 100 °C is condensed by passing it into
500 kg of water at 40.0 °C. What is the resulting temperature?

18.35 [II] The heat of combustion of ethane gas is 373 kcal/mole. Assuming
that 60.0 percent of the heat is useful, how many liters of ethane,
measured at standard temperature and pressure, must be burned
to convert 50.0 kg of water at 10.0 °C to steam at 100.0 °C? One
mole of a gas occupies 22.4 liters at precisely 0 °C and 1 atm.

18.36 [II] Calculate the heat of fusion of ice from the following data for ice
at 0 °C added to water:



18.37 [II] Determine the result when 100 g of steam at 100° C is passed into
a mixture of 200 g of water and 20 g of ice at exactly 0 °C in a
calorimeter that behaves thermally as if it were equivalent to 30 g
of water.

18.38 [II] Determine the result when 10 g of steam at 100 °C is passed into
a mixture of 400 g of water and 100 g of ice at exactly 0 °C in a
calorimeter that behaves thermally as if it were equivalent to 50 g
of water.

18.39 [II] Suppose a person who eats 2500 Cal of food each day loses the
heat equivalent of the food through evaporation of water from the
body. How much water must evaporate each day? At body
temperature, Lυ for water is about 600 cal/g.

18.40 [II] How long will it take a 500-W heater to raise the temperature of
400 g of water from 15.0 °C to 98.0 °C.

18.41 [II] A 0.250-hp drill causes a dull 50.0-g steel bit to heat up rather
than to deepen a hole in a block of hard wood. Assuming that
75.0 percent of the friction-loss energy causes heating of the bit,
by what amount will its temperature change in 20.0 s? For steel, c
= 450 J/kg·°C.

18.42 [II] On a certain day the temperature is 20 °C and the dew point is 5.0
°C. What is the relative humidity? Saturated air at 20 °C and 5.0
°C contains 17.12 and 6.80 g/m3 of water, respectively.

18.43 [II] How much water vapor exists in a 105-m3 room on a day when
the relative humidity in the room is 32 percent and the room
temperature is 20 °C? Saturated air at 20 °C contains 17.12 g/m3

of water.
18.44 [II] Air at 30 °C and 90 percent relative humidity is drawn into an air

conditioning unit and cooled to 20 °C. The relative humidity is
simultaneously reduced to 50 percent. How many grams of water
are removed from a cubic meter of air at 30 °C by the air
conditioner? Saturated air contains 30.4 g/m3 and 17.1 g/m3 of
water at 30 °C and 20 °C, respectively.



ANSWERS TO SUPPLEMENTARY PROBLEMS

18.19 [I] 0.253 J
18.20 [I] 2.01 × 106 J
18.21 [I] 2.5 × 102 kJ
18.22 [I] 21 × 106 J
18.23 [I] 2.18 × 103 kJ
18.24 [I] must remove 3.33 × 103 kJ
18.25 [I] (a) 32 cal; (b) 50 cal; (c) 32 cal
18.26 [I] 7.4 kcal/g or 7.4 × 103 kcal/kg or 31 × 103 kJ/kg
18.27 [II] 22 kg
18.28 [II] 75 °C
18.29 [II] 0.16 cal/g·°C or 0.67 kJ/kg·K
18.30 [II] 56 min
18.31 [II] 0.10 cal/g·°C or 0.42 kJ/kg·K
18.32 [II] 37 °C
18.33 [II] 7.2 kcal
18.34 [II] 51.8 °C
18.35 [II] 3.15 × 103 liters
18.36 [II] 80 cal/g or 335 kJ/kg
18.37 [II] 49 g of steam condensed, final temperature 100 °C
18.38 [II] 80 g of ice melted, final temperature 0 °C
18.39 [II] 4.17 kg
18.40 [II] 278 s
18.41 [II] 124 °C
18.42 [II] 40%
18.43 [II] 0.58 kg
18.44 [II] 19 g



Transfer of Thermal Energy

Thermal Energy Can Be Transferred into or out of a system via the
mechanisms of conduction, convection, and radiation. Remember that
heat is the thermal energy transferred from a system at a higher temperature
to a system at a lower temperature (with which it is in contact) via the
collisions of their constituent particles.

Conduction occurs when thermal energy moves through a material as a
result of collisions between the free electrons, ions, atoms, and/or molecules
of the material. The hotter a substance, the higher the average KE of its
atoms. When a temperature difference exists between materials in contact,
the higher-energy atoms in the warmer substance transfer energy to the
lower-energy atoms in the cooler substance when atomic collisions occur
between the two. Heat thus flows from hot to cold.

Consider the slab of material shown in Fig. 19-1. Its thickness is L, and
its cross-sectional area is A. The temperatures of its two faces are T1 and T2,
so the temperature difference across the slab is ∆T = T1 − T2. The quantity
ΔT/L is called the temperature gradient. It is the rate-of-change of
temperature with distance.



Fig. 19-1

The quantity of heat ∆Q transmitted from face 1 to face 2 in time ∆t is given
by

where kT depends on the material of the slab and is called the thermal
conductivity of the material. In the SI, kT has the unit W/m·K, and ΔQ/Δt is
in J/s (i.e., W). Other units sometimes used to express kT are related to
W/m·K as follows:

The Thermal Resistance (or R value) of a slab is defined by the heat-flow
equation in the form

TABLE 19-1
Approximate Values* of Thermal Conductivities



Its SI unit is m2·K/W. Its customary unit is ft2·h·°F/Btu, where 1 ft2·h·
°F/Btu = 0.176 m2·K/W. (It is unlikely that you will have occasion to
confuse this symbol R with the symbol for the universal gas constant.)

For several slabs of the same surface area in series, the combined R value
is

where R1, …, are the R values of the individual slabs.

Convection of thermal energy occurs in a fluid when warm material flows
so as to displace cooler material. Typical examples are the flow of warm air
from a register in a heating system and the flow of warm water in the Gulf
Stream.

Radiation is the mode of transport of radiant electromagnetic energy
through vacuum (e.g., the space between atoms). Radiant energy is distinct
from heat, though both correspond to energy in transit. Heat is heat;
electromagnetic radiation is electromagnetic radiation—don’t confuse the
two.

A blackbody is a body that absorbs all the radiant energy falling on it. At
thermal equilibrium, a body emits as much energy as it absorbs. Hence, a
good absorber of radiation is also a good emitter of radiation.



Suppose a surface of area A has absolute temperature T and radiates only
a fraction ε as much energy as would a blackbody surface. Then ε is called
the emissivity of the surface, and the energy per second (i.e., the power)
radiated by the surface is given by the Stefan-Boltzmann Law:

where σ = 5.67 × 10−8W/m2·K4 is the Stefan-Boltzmann constant, and T is
the absolute temperature. The emissivity of a blackbody is unity.

All objects whose temperature is above absolute zero radiate energy.
When an object at absolute temperature T is in an environment where the
temperature is Te, the net energy radiated per second by the object is

PROBLEM SOLVING GUIDE

Once again, temperature must be absolute. Be especially careful with Eqs.
(19.5) and (19.6). Working on radiation problems, you might need the
fourth root of a number. If your calculator does not have such a key,
remember you can take the square root of the square root.

SOLVED PROBLEMS

19.1 [I] An iron plate 2 cm thick has a cross-sectional area of 5000 cm2. One
face is at 150 °C, and the other is at 140 °C. How much heat
passes through the plate each second? For iron, kT = 80 W/m·K.

19.2 [I] A metal plate 4.00 mm thick has a temperature difference of 32.0 °C
between its faces. It transmits 200 kcal/h through an area of 5.00
cm2. Calculate the thermal conductivity of this metal in W/m·K.



19.3 [II]  Two metal plates are soldered together as shown in Fig. 19-2. It is
known that A = 80 cm2, L1 = L2 = 3.0 mm, T1 = 100 °C, T2 = 0 °C.
For the plate on the left, kT1 = 48.1 W/m·K; for the plate on the
right kT2 = 68.2 W/m·K. Find the heat flow rate through the plates
and the temperature T of the soldered junction.

Fig. 19-2

We assume equilibrium conditions so that the heat flowing
through plate-1 equals that through plate-2. Then

But L1 = L2, so this becomes

The heat flow rate is then

19.4 [II]  A beverage cooler is in the shape of a cube, 42 cm on each inside



edge. Its 3.0-cm-thick walls are made of plastic (kT = 0.050
W/m·K). When the outside temperature is 20 °C, how much ice
will melt inside the cooler each hour?

We have to determine the amount of heat conducted into the box.
The cubical box has six sides, each with an area of about (0.42
m)2. From ΔQ/Δt = kTA ΔT/L, we have, with the ice inside at 0 °C,

In one hour, ∆Q = (60)2(8.43) = 30 350 cal. To melt 1.0 g of ice
requires 80 cal, so the mass of ice melted in one hour is

19.5 [III] A copper tube (length, 3.0 m; inner diameter, 1.500 cm; outer
diameter, 1.700 cm) extends across a 3.0-m-long vat of rapidly
circulating water maintained at 20 °C. Live steam at 100 °C passes
through the tube. (a) What is the heat flow rate from the steam
into the vat? (b) How much steam is condensed each minute? For
copper, kL = 1.0 cal/s·cm·°C.

To determine the rate at which heat flows through the tube wall,
approximate it as a flat sheet. Because the thickness of the tube is
much smaller than its radius, the inner surface area of the tube,

2πriL = 2π(0.750 cm)(300 cm) = 1410 cm2

nearly equals its outer surface area,

2πr0L = 2π(0.850 cm)(300 cm) = 1600 cm2

As an approximation, consider the tube to be a plate of thickness
0.100 cm and area given by



(b) In one minute, the heat conducted from the tube is

ΔQ = (1.2 × 106 cal/s)(60 s) = 72 × 106 cal

It takes 540 cal to condense 1.0 g of steam at 100 °C.
Therefore,

In practice, various factors would greatly reduce this theoretical
value.

19.6 [I]    (a) Calculate the R value for a wall consisting of the following
layers: concrete block (R = 1.93), 1.0 inch of insulating board (R =
4.3), and 0.50 inch of drywall (R = 0.45), all in U.S. Customary
Units. (b) If the wall has an area of 15 m2, find the heat flow per
hour through it when the temperature just outside is 20 °C lower
than inside.

(a) R = R1 + R2 + … + RN = 1.93 + 4.3 + 0.45 = 6.7
in U.S. Customary Units. Using the fact that 1 U.S. Customary
Unit of R = 0.176 m2 ·K/W, we get R = 1.18 · K/W.

19.7 [I]  A spherical body of 2.0 cm diameter is maintained at 600 °C.
Assuming that it radiates as if it were a blackbody, at what rate (in
watts) is energy radiated from the sphere?

19.8 [I]    An unclothed person whose body has a surface area of 1.40 m2

with an emissivity of 0.85 has a skin temperature of 37 °C and
stands in a 20 °C room. How much energy does the person lose



through radiation per minute?

Energy is power (P) multiplied by time (∆t). From P = εAσ(T4

−Te
4), the energy loss is

Using σ = 5.67 × 10−8 W/m2 ·K4, T = 273 + 37 = 310 K, and Te =
273 + 20 = 293 K results in an energy loss of

7.6 kJ = 1.8 kcal

SUPPLEMENTARY PROBLEMS

19.9 [I]  What temperature gradient must exist in an aluminum rod for it to
transmit 8.0 cal per second per cm2 of cross section down the rod?
kT for aluminum is 210 W/K·m.

19.10 [I]  What happens to the rate at which heat passes through a window
when the thickness of the glass is doubled, all else kept constant?

19.11 [I]  Suppose the area of a window on a passenger jet is doubled in size
and all else is kept constant. Compared with the original window,
what will happen to the rate at which heat passes out through the
new window from the cabin?

19.12 [I]  The temperature on the inside face of a glass window is 20.0 °C
while the outside temperature is 0.00 °C. The window is 100 cm
by 100 cm by 10.0 mm and has a thermal conductivity of 0.85
W/m·K. How much energy passes outward through the glass in
each second? [Hint: Study Eq. (19.1).]

19.13 [I]  A sheet of ice 1.0 m by 1.0 m and 1.0 cm thick covers a tank filled
with water at 0.0 °C. The outside temperature is −10.0 °C. At what
rate does the water lose energy passing through the ice? [Hint:
Consult Table 19-1.]

19.14 [I]  A single-thickness glass window on a house actually has layers of



stagnant air on its two surfaces. But if it did not, how much heat
would flow out of an 80-cm × 40-cm × 3.0-mm window each hour
on a day when the outside temperature was precisely 0 °C and the
inside temperature was 18 °C? For glass, kT is 0.84 W/k·m.

19.15 [I]  How many grams of water at 100 °C can be evaporated per hour
per cm2 by the heat transmitted through a steel plate 0.20 cm thick,
if the temperature difference between the plate faces is 100 °C?
For steel, kT is 42 W/k·m.

19.16 [II]  A certain double-pane window consists of two glass sheets, each
80 cm × 80 cm × 0.30 cm, separated by a 0.30-cm stagnant air space.
The indoor surface temperature is 20 °C, while the outdoor surface
temperature is exactly 0 °C. How much heat passes through the
window each second? kT = 0.84 W/k·m for glass and about 0.080
W/k·m for air.

19.17 [I]  Determine the R value for a 2.54-cm-thick plaster wall. [Hint:
Consult Table 19-1 and study Eq. (19.3).]

19.18 [I]  A down comforter is 1.00 inch thick. Determine its thermal
resistance, and compare with the R value of the wall in the
previous problem.

19.19 [II]  A tungsten filament in an old lightbulb has an area of 3.001 × 10–

6 m6. The bulb operates at a power of 10.0 W. Take the emissivity of
the filament to be 0.40. You can ignore the temperature of the
environment. What is the temperature of the filament?

19.20 [II]  A small hole in a furnace acts like a blackbody. Its area is 1.00
cm2, and its temperature is the same as that of the interior of the
furnace, 1727 °C. How many calories are radiated out of the hole
each second?

19.21 [I]  An incandescent lamp filament has an area of 50 mm2 and operates
at a temperature of 2127 °C. Assume that all the energy furnished
to the bulb is radiated from it. If the filament’s emissivity is 0.83,
how much power must be furnished to the bulb when it is
operating?

19.22 [I]  A sphere of 3.0 cm radius acts like a blackbody. It is in equilibrium



with its surroundings and absorbs 30 kW of power radiated to it
from the surroundings. What is the temperature of the sphere?

19.23 [II] A 2.0-cm-thick brass plate (kT = 105 W/k·m) is sealed face-to-
face to a glass sheet (kT = 0.80 W/k·m), and both have the same
area. The exposed face of the brass plate is at 80 °C, while the
exposed face of the glass is at 20 °C. How thick is the glass if the
glass-brass interface is at 65 °C?

ANSWERS TO SUPPLEMENTARY PROBLEMS

19.9 [I]      16 °C/cm
19.10 [I]    It is halved.
19.11 [I]    It is doubled.
19.12 [I]    1.7 kJ
19.13 [I]    2.2 kW

19.14 [I]    1.4 × 103 kcal/h
19.15 [I]    0.33 kg/h·cm2

19.16 [II]  69 cal/s
19.17 [I]    0.88 m2·K/W
19.18 [I]    1.27 m2·K/W, or to 1 significant figure 1 m2·K/W
19.19 [II]   3.4 × 103 K
19.20 [II]   21.7 cal/s
19.21 [I]    78 W
19.22 [I]    2 6 × 103 K
19.23 [II]    0.46 mm



First Law of Thermodynamics

Heat (ΔQ) is the thermal energy that flows from one body or system to
another, which is in contact with it, because of their temperature difference.
Heat always flows from hot to cold (i.e., from the higher temperature to the
lower temperature). For two objects in contact to be in thermal equilibrium
with each other (i.e., for no net heat transfer from one to the other), their
temperatures must be the same. If each of two objects is in thermal
equilibrium with a third body, then the two are in thermal equilibrium with
each other. (This fact is often referred to as the Zeroth Law of
Thermodynamics.)

By convention we will take heat flowing into a system (i.e., heat-in) as
positive and heat flowing out of a system (i.e., heat-out) as negative.

The Internal Energy (U) of a system is the total energy content of the
system. It is the sum of all forms of energy possessed by the atoms and
molecules of the system.

The Work Done by a System (ΔW) is positive if the system thereby loses
energy to its surroundings. In other words, work-out is positive. When the
surroundings do work on the system so as to give it energy, ΔW is a
negative quantity. In other words, work-in is negative. In a small expansion
ΔV, a fluid at constant pressure P does work given by

This sign convention is not universal; you’ll find lots of physics textbooks in
which work done on the system (i.e., energy-in) is taken to be positive. And
so work done by the system (i.e., energy-out) is negative. Then in a small
expansion of a gas, work is done by the gas, Wout, (i.e., energy-out) and is



negative, whereas ΔV is positive, as is P; hence in that system we need a
minus sign,

The First Law of Thermodynamics is a statement of the law of
conservation of energy. It maintains that if an amount of heat ΔQ flows into
a system, then this energy must appear as either increased internal energy
ΔU for the system and/or work ΔW done by the system on its surroundings.
As an equation, the First Law can be stated as

Remember that here we are using the convention that ΔWout > 0 and ΔQin >
0.

Again, this sign convention is not universal. As an alternative, take work
done on the system, ΔWin, (i.e., energy-in) to be positive. And heat into the
system, ΔQin, (i.e., energy-in) as positive. Then the First Law becomes

You will have to pick the sign convention that suits your purposes—they
both yield identical results. Here we will stay with the more traditional
approach, Eq. (20.3).

An Isobaric Process is a process carried out at constant pressure.
In our work with gases, an important aid in visualizing what’s happening

is the P–V diagram—a plot of absolute pressure (P) on the vertical axis,
against volume (V) on the horizontal axis. A straight horizontal line then
represents an isobaric process. The gas increases in volume from Vi to Vf at
a constant pressure Pi.

An Isovolumic Process is a process carried out at constant volume. When a
gas undergoes such a process,

and so the First Law of Thermodynamics becomes



Any heat that flows into the system appears as increased internal energy of
the system.

A straight vertical line in the P–V diagram represents an isovolumic
process. For example, a pressure drop from Pi to Pf keeping the volume
constant at Vi is an isovolumic process.

An Isothermal Process is a constant-temperature process. In the case of an
ideal gas where the constituent atoms or molecules do not interact, ΔU = 0
in an isothermal process. However, this is not true for many other systems.
For example, ΔU ≠ 0 as ice melts to water at 0 °C, even though the process
is isothermal.

For an ideal gas, ΔU = 0 in an isothermal change and so the First Law
becomes

Thus for an ideal gas changing isothermally from (P1, V1) to (P2, V2), where
P1V1 = P2V2

Here, ln is the logarithm to the base e.
Figure 20-1(a) shows an isotherm running from (Pi, Vi) down to (Pf, Vf),

that is, from point-A to point-C. This is an isothermal expansion
accomplished at a constant temperature. According to Eq. (17.7), if the
pressure goes down, υrms goes down, and by Eq. (17.4) the temperature goes
down unless heat enters the system (see Fig. 20-2).

An Adiabatic Process is one in which no heat is transferred to or from the
system. For such a process, ΔQ = 0. Hence, in an adiabatic process, the first
law becomes

Any work done by the system is done at the expense of the internal energy.
Any work done on the system serves to increase the internal energy.

For an ideal gas changing from conditions (P1, V1, T1) to (P2, V2, T2) in
an adiabatic process,



where γ = cp/cυ is discussed below.
Figure 20-2 shows an adiabat running from B down to C. Notice that the

curve descends more rapidly than does the isotherm from A down to B.

Specific Heats of Gases: When a gas is heated at constant volume, the heat
supplied goes to increase the internal energy of the gas molecules. But when
a gas is heated at constant pressure, the heat supplied not only increases the
internal energy of the molecules but also does mechanical work in
expanding the gas against the opposing constant pressure. Hence, the
specific heat of a gas at constant pressure cp, is greater than its specific heat
at constant volume, cυ. It can be shown that for an ideal gas of molecular
mass M,

where R is the universal gas constant. In the SI, R = 8314 J/kmol · K and M
is in kg/kmol; then cp and cυ must be in J/kg·K = J/kg·°C. Some people use
R = 1.98 cal/mol·°C and M in g/mol, in which case cp and cυ are in cal/g·°C.

Specific Heat Ratio (γ = cp/cυ): As discussed above, this ratio is greater
than unity for a gas. The kinetic theory of gases indicates that for
monatomic gases (such as He, Ne, and Ar), γ = 1.67. For most diatomic
gases (the ones that are rigidly bonded such as O2, and N2), γ = 1.40 at
ordinary temperatures.

Work Is Related to Area in a P–V diagram. The work done by a fluid in an
expansion is equal to the area beneath the expansion curve on a P–V
diagram. Figure 20-1 shows several different processes that carry the system
from state-A to state-C. In each case the work done, the shaded area, is
different.

In a cyclic process, the work output per cycle done by a fluid is equal to
the area enclosed by the P–V diagram representing the cycle.

The Efficiency of a Heat Engine is defined as



Fig. 20-1

The Carnot cycle is the most efficient cycle possible for a heat engine. That
special sequence of processes (depicted in Fig. 20-2) is formed by an
isothermal expansion from A to B, followed by an adiabatic expansion from
B to C, followed by an isothermal contraction from C to D, and finally an
adiabatic contraction back to A. In the process an amount of heat QH enters
the system from a high-temperature reservoir, and an amount QL is expelled
to a low-temperature reservoir. The gray-shaded area corresponds to the
work done by the system. An engine that operates in accordance with this
cycle between a hot reservoir (TH) and a cold reservoir (TL) has an
efficiency

Kelvin temperatures must be used in this equation.
Another way to express this Carnot efficiency is

where |QH| is the positive amount of heat entering the engine from the high-
temperature reservoir and |QL| is the positive amount of heat exhausted to
the low-temperature reservoir. Alternatively, it follows from Eq. (20.12) that



Fig. 20-2

PROBLEM SOLVING GUIDE

Not all physics textbooks incorporate the Δ sign the same way in the First
Law. Often Q represents heat in or out of a system rather than the more
explicit ΔQ. Study the P–V diagrams. Imagine each P–V diagram filled with
a grid of nested isotherms starting at the upper left (at high Pi and low Vi)
and successively going to the right and rising (high Pi and ever-higher Vi).
When one isotherm is below some other isotherm, it corresponds to a lower
temperature. Thus, the isotherm in Fig. 20-2 from C to D is at a lower
temperature than the isotherm from A to B.

SOLVED PROBLEMS

20.1 [I]    In a certain process, 8.00 kcal of heat is furnished to the system
while the system does 6.00 kJ of work. By how much does the
internal energy of the system change during the process?

Here 8.00 kcal is heat-in and 6.00 kJ is work-out, both of which
are positive. Consequently,

ΔQ = (8000 cal)(4.184 J/cal) = 33.5 kJ    and    ΔW = 6.00 kJ

Therefore, from the First Law ΔQ = ΔU + ΔW,



ΔU = ΔQ – ΔW = 33.5 kJ – 6.00 kJ = 27.5 kJ

20.2 [I]    The specific heat of water is 4184 J/kg · K. By how many joules
does the internal energy of 50 g of water change as it is heated
from 21 °C to 37 °C? Assume that the expansion of the water is
negligible.

The heat added to raise the temperature of the water is

ΔQ = cm ΔT = (4184 J/kg · K)(0.050 kg)(16 °C) = 3.4 × 103 J

Notice that ΔT in Celsius is equal to ΔT in kelvin. If we ignore the
slight expansion of the water, no work was done on the
surroundings and so ΔW = 0. Then, the First Law, ΔQ = ΔU + ΔW,
tells us that

ΔU = ΔQ = 3.4 kJ

20.3 [I]    How much does the internal energy of 5.0 g of ice at precisely 0 °C
increase as it is changed to water at 0 °C? Neglect the change in
volume.

The heat needed to melt the ice is

ΔQ = mLf = (5.0 g)(80 cal/g) = 400 cal

No external work is done by the ice as it melts and so ΔW = 0.
Therefore, the First Law, ΔQ = ΔU + ΔW, tells us that

ΔU = ΔQ = (400 cal)(4.184 J/cal) = 1.7 kJ

20.4 [II]  A spring (k = 500 N/m) supports a 400-g mass, which is immersed
in 900 g of water. The specific heat of the mass is 450 J/kg · K.
The spring is now stretched 15 cm, and after thermal equilibrium
is reached, the mass is released so it vibrates up and down. By
how much has the temperature of the water changed when the
vibration has stopped?



The energy stored in the spring is dissipated by the effects of
friction and goes to heat the water and mass. The energy stored in
the stretched spring was

This energy appears as thermal energy that flows into the water
and the mass. Using ΔQ = cm ΔT,

20.5 [II]  Find ΔW and ΔU for a 6.0-cm cube of iron as it is heated from 20
°C to 300 °C at atmospheric pressure. For iron, c = 0.11 cal/g · °C
and the volume coefficient of thermal expansion is 3.6 × 10−5 °C
−1. The mass of the cube is 1700 g.

Given that ΔT = 300 °C – 20 °C = 280 °C,

ΔQ = cm ΔT = (0.11 cal/g · °C)(1700 g)(280 °C) = 52 kcal

To find that the work done by the expansion of the cube, we need
to determine ΔV.

The volume of the cube is V = (6.0 cm)3 = 216 cm3. Using (ΔV)/V
= βΔT,

Then, assuming atmospheric pressure to be 1.0 × 105 Pa,

But the First Law tells us that

Notice how very small the work of expansion against the
atmosphere is in comparison to ΔU and ΔQ. Often ΔW can be



neglected when dealing with liquids and solids.

20.6 [II]  A motor supplies 0.4 hp to stir 5 kg of water. Assuming that all the
work goes into heating the water by friction losses, how long will
it take to increase the temperature of the water 6 °C?

The heat required to heat the water is

ΔQ = mc ΔT = (5000 g)(1 cal/g · °C)(6 °C) = 30 kcal

This is actually supplied by friction work, so

Friction work done = ΔQ = (30 kcal)(4.184 J/cal) = 126 kJ

and this equals the work done by the motor. But

Work done by motor in time t = (Power)(t) = (0.4 hp × 746 W/hp)(t).

Equating this to our previous value for the work done yields

20.7 [I]    In each of the following situations, find the change in internal
energy of the system. (a) A system absorbs 500 cal of heat and at
the same time does 400 J of work. (b) A system absorbs 300 cal
and at the same time 420 J of work is done on it. (c) Twelve
hundred calories are removed from a gas held at constant volume.
Give your answers in kilojoules.
(a) ΔU = ΔQ – ΔW = (500 cal)(4.184 J/cal) – 400 J = 1.69 kJ
(b) ΔU = ΔQ – ΔW = (300 cal)(4.184 J/cal) – (–420 J) = 1.68 kJ
(c) ΔU = ΔQ – ΔW = (–1200 cal)(4.184 J/cal) – 0 = –5.02 kJ

Notice that ΔQ is positive when heat is added to the system and
ΔW is positive when the system does work. In the reverse cases,
ΔQ and ΔW must be taken negative.

20.8 [I]    For each of the following adiabatic processes, find the change in
internal energy. (a) A gas does 5 J of work while expanding



adiabatically. (b) During an adiabatic compression, 80 J of work is
done on a gas.

During an adiabatic process, no heat is transferred to or from the
system.

(a) ΔU = ΔQ – ΔW = 0 – 5 J = –5 J
(b) ΔU = ΔQ – ΔW = 0 – (–80 J) = +80 J

20.9 [III]   The temperature of 5.00 kg of N2 gas is raised from 10.0 °C to
130.0 °C. If this is done at constant volume, find the increase in
internal energy ΔU. Alternatively, if the same temperature
change now occurs at constant pressure determine both ΔV and
the external work ΔW done by the gas. For N2 gas, cυ = 0.177
cal/g · °C and cp = 0.248 cal/g · °C.

If the gas is heated at constant volume, then no work is done
during the process. In that case ΔW = 0, and the First Law tells
us that (ΔQ)υ = ΔU. Because (ΔQ)υ = cυ m ΔT,

ΔU = (ΔQ)υ = (0.177 cal/g · °C)(5000 g)(120 °C) = 106 kcal = 443 kJ

The temperature change is a manifestation of the internal energy
change.

When the gas is heated 120 °C at constant pressure, the same
change in internal energy occurs. In addition, however, work is
done. The First Law then becomes

(ΔQ)p = ΔU + ΔW = 443 kJ + ΔW

But (ΔQ)p = cpm ΔT = (0.248 cal/g · °C)(5000 g)(120 °C)

= 149 kcal = 623 kJ

Hence ΔW = (ΔQ)p – ΔU = 623 kJ – 443 kJ = 180 kJ



20.10 [II]  One kilogram of steam at 100 °C and 101 kPa occupies 1.68 m3.
(a) What fraction of the observed heat of vaporization of water is
accounted for by the expansion of water into steam?
(b) Determine the increase in internal energy of 1.00 kg of water
as it is vaporized at 100 °C.

(a) One kilogram of water expands from 1000 cm3 to 1.68 m3, so ΔV
= 1.68 – 0.001 ≈ 1.68 m3. Therefore, the work done in the
expansion is

ΔW = PΔV = (101 × 103 N/m2)(1.68 m3) = 169 kJ

The heat of vaporization of water is 540 cal/g, which is 2.26
MJ/kg. The required fraction is therefore

(b) From the First Law, ΔU = ΔQ – ΔW, and so

ΔU = 2.26 × 106 J – 0.169 × 106 J = 2.07 MJ

20.11 [I]  For nitrogen gas, cυ = 740 J/kg · K. Assuming it to behave like an
ideal gas, find its specific heat at constant pressure. (The
molecular mass of nitrogen gas is 28.0 kg/kmol.)

Method 1

Method 2

Since N2 is a diatomic gas, and since γ = cp/cυ for such a gas,

cp = 1.40 cυ = 1.40(740 J/kg · K) = 1.04 kJ/kg · K

20.12 [I]  How much work is done by an ideal gas in expanding isothermally
from an initial volume of 3.00 liters at 20.0 atm to a final volume



of 24.0 liters?

For an isothermal expansion by an ideal gas,

20.13 [I]  The P–V diagram in Fig. 20-3 applies to a gas undergoing a cyclic
change in a piston-cylinder arrangement. What is the work done
by the gas (a) During portion AB of the cycle? (b) During portion
BC? (c) During portion CD? (d) During portion DA?

Fig. 20-3

In expansion, the work done is equal to the area under the
pertinent portion of the P–V curve. In contraction, the work is
numerically equal to the area but is negative.

(a) Work = Area ABFEA = [(4.0 – 1.5) × 10−6m3](4.0 × 105 N/m2)
= 1.0 J

(b) Work = Area under BC = 0
In portion BC, the volume does not change; therefore, PΔV = 0.

(c) This is a contraction, ΔV is negative, and so the work is
negative:

W = –(Area CDEFC) = –(2.5 × 10−6m3)(2.0 × 105 N/m2) = –0.50 J

(d) W = 0



20.14 [I] For the thermodynamic cycle shown in Fig. 20-3, find (a) the net
work output of the gas during the cycle and (b) the net heat flow
into the gas per cycle.

Method 1

(a) From Problem 20.13, the net work done is 1.0 J – 0.50 J = 0.5
J.

Method 2

The net work done is equal to the area enclosed by the P–V
diagram:

Work = Area ABCDA = (2.0 × 105 N/m2)(2.5 × 10−6 m3) = 0.50 J

(b) Suppose the cycle starts at point-A. The gas returns to this
point at the end of the cycle, so there is no difference in the gas
at its start and end points. For one complete cycle, ΔU is
therefore zero. We have then, if the first law is applied to a
complete cycle,

ΔQ = ΔU + ΔW = 0 + 0.50 J = 0.50 J = 0.12 cal

20.15 [I]  What is the net work output per cycle for the thermodynamic cycle
in Fig. 20-4?



Fig. 20-4

We know that the net work output per cycle is the area enclosed
by the P–V diagram. We estimate that in area ABCA there are 22
squares, each of area

(0.5 × 105 N/m2)(0.1 m3) = 5 kJ

Therefore,

Area enclosed by cycle ≈ (22)(5 kJ) = 1 × 102 kJ

The net work output per cycle is 1 × 102 kJ.

20.16 [II]  Twenty cubic centimeters of monatomic gas at 12 °C and 100
kPa is suddenly (and adiabatically) compressed to 0.50 cm3. Assume
that we are dealing with an ideal gas. What are its new pressure and
temperature?

For an adiabatic change involving an ideal gas,  where
γ = 1.67 for a monatomic gas. Hence,

To find the final temperature, we could use P1V1/T1 = P2V2/T2.
Instead, let us use

As a check,



20.17 [I]  Compute the maximum possible efficiency of a heat engine
operating between the temperature limits of 100 °C and 400 °C.

Remember that our thermodynamic equations are expressed in
terms of absolute temperature. The most efficient engine is the
Carnot engine, for which

20.18 [II]  A steam engine operating between a boiler temperature of 220
°C and a condenser temperature of 35.0 °C delivers 8.00 hp. If its
efficiency is 30.0 percent of that for a Carnot engine operating
between these temperature limits, how many calories are
absorbed each second by the boiler? How many calories are
exhausted to the condenser each second?

We can determine the input heat from the relation for the
efficiency

and so every second

To find the energy rejected to the condenser, we use the law of
conservation of energy:

20.19 [II] Three kilomoles (6.00 kg) of hydrogen gas at S.T.P. expands
isobarically to precisely twice its volume. (a) What is the final



temperature of the gas? (b) What is the expansion work done by the
gas? (c) By how much does the internal energy of the gas change? (d)
How much heat enters the gas during the expansion? For H2, cυ =
10.0 kJ/kg · K. Assume the hydrogen will behave as an ideal gas.

(a) From P1V1/T1 = P2V2/T2 with P1 = P2,

(b) Because 1 kmol at S.T.P. occupies 22.4 m3, we have V1 =
67.2 m3. Then

ΔW = P ΔV = P(V2−V1) = (1.01 × 105 N/m2)(67.2 m3) = 6.8 MJ

(c) To raise the temperature of this ideal gas by 273 K at
constant volume requires

ΔQ = cυmΔT = (10.0 kJ/kg · K)(6.00 kg)(273 K) = 16.4 MJ

Because the volume is constant here, no work is done and ΔQ
equals the internal energy that must be added to the 6.00 kg of
H2 to change its temperature from 273 K to 546 K. Therefore,
ΔU = 16.4 MJ.

(d) The system obeys the First Law during the process and so

ΔQ = ΔU + ΔW = 16.4 MJ + 6.8 MJ = 23.2 MJ

20.20 [II]  A cylinder of ideal gas is closed by an 8.00 kg movable piston
(area = 60.0 cm2) as illustrated in Fig. 20-5. Atmospheric pressure is
100 kPa. When the gas is heated from 30.0 °C to 100.0 °C, the piston
rises 20.0 cm. The piston is then fastened in place, and the gas is
cooled back to 30.0 °C. Calling ΔQ1 the heat added to the gas in the
heating process, and ΔQ2 the heat lost during cooling, find the
difference between ΔQ1 and ΔQ2.



Fig. 20-5

During the heating process, the internal energy changed by ΔU1,
and an amount of work ΔW1 was done. The absolute pressure of
the gas was

During the cooling process, ΔW = 0 and so (since ΔQ2 is heat lost)

− ΔQ2 = ΔU2

But the ideal gas returns to its original temperature, and so its
internal energy is the same as at the start. Therefore ΔU2 = −ΔU1,
or ΔQ2 = ΔU1. It follows that ΔQ1 exceeds ΔQ2 by 136 J = 32.5
cal.

SUPPLEMENTARY PROBLEMS

20.21 [I]  A 2.0 kg metal block (c = 0.137 cal/g · °C) is heated from 15 °C to
90 °C. By how much does its internal energy change?



20.22 [I]  By how much does the internal energy of 50 g of oil (c = 0.32 cal/g
· °C) change as the oil is cooled from 100 °C to 25 °C.

20.23 [I]  A gas does 100.0 J of work while receiving 110.0 J heat. What is
the resulting change in the gas’s internal energy?

20.24 [I]  A 10.0-kg block of lead is heated from 23.0 °C to 100 °C during
which time it expands only negligibly, doing essentially no work
on the environment. Calculate its increase in internal energy.
[Hint: Look at Table 18-1.]

20.25 [I]  If a person does 8.00 h of moderate physical labor “burning” 400
kcal/h, by how much does his or her internal energy change as a
result?

20.26 [I]  It is given that 1.000 g of water becomes 1676 cm3 of steam at
100.0 °C and atmospheric pressure. How much work is done by
the vapor when 1.000 g of water is converted to steam at
atmospheric pressure?

20.27 [I]  With the previous problem in mind, what fraction of the energy
supplied to the water ends up as work? [Hint: Look at Table 18-2.]
Give your answer to two significant figures.

20.28 [I]  Molecular oxygen having a mass of 10.0 g is in a cylinder sealed
with a movable piston. The gas is heated from 0.00 °C to 10.0 °C
at a constant pressure and expands. Given that cp for O2 is 0.919
kJ/kg, how much heat was received by the gas?

20.29 [II]  Molecular hydrogen gas having a mass of 6.44 g at 26.0 °C is
heated until its volume doubles while it is held at a constant
pressure. How much work was done by the gas? [Hint: Take it to
be an ideal gas.]

20.30 [I]  A sealed chamber containing 32.5 g of molecular oxygen and 20.2
g of molecular nitrogen at 48.0 °C is cooled down to 20.2 °C.
Given that for N2, cυ = 0.743 kJ/kg · K, and for O2, cυ = 0.659
kJ/kg · K, determine the resulting change in the internal energy of



the gas.

20.31 [II]  A gas at a pressure of 2.10 × 105 Pa occupies 4.98 × 10–3 m3 in a
chamber that can change its volume. The gas is at an initial
temperature of 290 K when it is heated, so that it expands
isobarically, thereupon doing 200 J of work. Determine the new
volume and the final temperature of the gas. [Hint: Use Eq. (20.1)
and the Ideal Gas Law applied before and after the expansion.]

20.32 [I]  An ideal heat engine operates between 405 K and 305 K. Given
that it receives 16 670 J of heat from the high-temperature source
during each cycle, how much work does it do? How much heat
does it exhaust?

20.33 [II]  A 70-g metal block moving at 200 cm/s slides across a tabletop a
distance of 83 cm before it comes to rest. Assuming 75 percent of
the thermal energy developed by friction goes into the block, how
much does the temperature of the block rise? For the metal, c =
0.106 cal/g · °C.

20.34 [II]  If a certain mass of water falls a distance of 854 m and all the
energy is effective in heating the water, what will be the
temperature rise of the water?

20.35 [II]  How many joules of heat per hour are produced in a motor that is
75.0 percent efficient and requires 0.250 hp to run it?

20.36 [II]  A 100-g bullet (c = 0.030 cal/g · °C) is initially at 20 °C. It is
fired straight upward with a speed of 420 m/s, and on returning to
the starting point strikes a cake of ice at exactly 0 °C. How much
ice is melted? Neglect air friction.

20.37 [II]  To determine the specific heat of an oil, an electrical heating coil
is placed in a calorimeter with 380 g of the oil at 10 °C. The coil
consumes energy (and gives off heat) at the rate of 84 W. After
3.0 min, the oil temperature is 40 °C. If the water equivalent of
the calorimeter and coil is 20 g, what is the specific heat
of the oil?



20.38 [I]  How much external work is done by an ideal gas in expanding
from a volume of 3.0 liters to a volume of 30.0 liters against a
constant pressure of 2.0 atm?

20.39 [I]  As 3.0 liters of ideal gas at 27 °C is heated, it expands at a constant
pressure of 2.0 atm. How much work is done by the gas as its
temperature is changed from 27 °C to 227 °C?

20.40 [I]  An ideal gas expands adiabatically to three times its original
volume. In doing so, the gas does 720 J of work. (a) How much
heat flows from the gas? (b) What is the change in internal energy
of the gas? (c) Does its temperature rise or fall?

20.41 [I]  An ideal gas expands at a constant pressure of 240 cmHg from 250
cm3 to 780 cm3. It is then allowed to cool at constant volume to its
original temperature. What is the net amount of heat that flows
into the gas during the entire process?

20.42 [I]  As an ideal gas is compressed isothermally, the compressing agent
does 36 J of work on the gas. How much heat flows from the gas
during the compression process?

20.43 [II]  The specific heat of air at constant volume is 0.175 cal/g · °C. (a)
By how much does the internal energy of 5.0 g of air change as it
is heated from 20 °C to 400 °C? (b) Suppose that 5.0 g of air is
adiabatically compressed so as to rise its temperature from 20 °C
to 400 °C. How much work must be done on the air to compress
it?

20.44 [II]  Water is boiled at 100 °C and 1.0 atm. Under these conditions,
1.0 g of water occupies 1.0 cm3, 1.0 g of steam occupies 1670
cm3, and Lυ = 540 cal/g. Find (a) the external work done when
1.0 g of steam is formed at 100 °C and (b) the increase in internal
energy.

20.45 [II]  The temperature of 3.0 kg of krypton gas is raised from −20 °C
to 80 °C. (a) If this is done at constant volume, compute the heat
added, the work done, and the change in internal energy. (b)



Repeat if the heating process is at constant pressure. For the
monatomic gas Kr, cυ = 0.035 7 cal/g · °C and cp = 0.059 5 cal/g
· °C.

20.46 [I]    (a) Compute cυ for the monatomic gas argon, given cp = 0.125
cal/g · °C and γ = 1.67. (b) Compute cp for the diatomic gas nitric
oxide (NO), given cυ = 0.166 cal/g · °C and γ = 1.40.

20.47 [I]  Compute the work done in an isothermal compression of 30 liters
of ideal gas at 1.0 atm to a volume of 3.0 liters.

20.48 [II]  Five moles of neon gas at 2.00 atm and 27.0 °C is adiabatically
compressed to one-third its initial volume. Find the final pressure,
final temperature, and external work done on the gas. For neon, γ
= 1.67, cυ = 0.148 cal/g · °C, and M = 20.18 kg/kmol.

20.49 [II]  Determine the work done by the gas in going from A to B in the
thermodynamic cycle shown in Fig. 20-2. Repeat for portion CA.
Give answers to one significant figure.

20.50 [II]  Find the net work output per cycle for the thermodynamic cycle
in Fig. 20-6. Give your answer to two significant figures.

Fig. 20-6

20.51 [II]  Four grams of gas, confined to a cylinder, is carried through the
cycle shown in Fig. 20-6. At A the temperature of the gas is 400
°C. (a) What is its temperature at B? (b) If, in the portion from A
to B, 2.20 kcal flows into the gas, what is cυ for the gas? Give



your answers to two significant figures.

20.52 [II]  Figure 20-6 is the P–V diagram for 25.0 g of an enclosed ideal
gas. At A the gas temperature is 200 °C. The value of cυ for the
gas is 0.150 cal/g · °C. (a) What is the temperature of the gas at
B? (b) Find ΔU for the portion of the cycle from A to B. (c) Find
ΔW for this same portion. (d) Find ΔQ for this same portion.

ANSWERS TO SUPPLEMENTARY PROBLEMS

20.21 [I]    86 kJ

20.22 [I]    −1.2 kcal

20.23 [I]    +10.0 J

20.24 [I]    100 kJ

20.25 [I]    −13.4 MJ

20.26 [I]    169.7 J

20.27 [I]    7.5%

20.28 [I]    91.9 J

20.29 [II]  8.00 kJ

20.30 [I]    decreased by 1.01 kJ

20.31 [II]  5.93 × 10–3 m3; 345 K

20.32 [I]    4.12 kJ; 12.6 kJ

20.33 [II]  3.4 × 10−3 °C



20.34 [II]  2.00 °C

20.35 [II]  168 kJ

20.36 [II]  26 g

20.37 [II]  0.26 cal/g · °C

20.38 [I]    5.5 kJ

20.39 [I]    0.40 kJ

20.40 [I]    (a) none; (b) −720 J; (c) it falls

20.41 [I]    40.5 cal

20.42 [I]    8.6 cal

20.43 [II]  (a) 0.33 kcal; (b) 1.4 kJ or since work done on the system is
negative, −1.4 kJ

20.44 [II]  (a) 0.17 kJ; (b) 0.50 kcal

20.45 [II]  (a) 11 kcal, 0, 45 kJ; (b) 18 kcal, 30 kJ, 45 kJ

20.46 [I]    (a) 0.074 9 cal/g · °C; (b) 0.232 cal/g · °C

20.47 [I]    7.0 kJ

20.48 [II]  1.27 MPa, 626 K, 20.4 kJ

20.49 [II]  0.4 MJ, −0.3 MJ

20.50 [II]  2.1 kJ

20.51 [II]  (a) 2.0 × 103 K; (b) 0.25 cal/g · °C

20.52 [II]  (a) 1.42 × 103 K; (b) 3.55 kcal = 14.9 kJ; (c) 3.54 kJ; (d) 18.4 kJ



Entropy and the Second Law

The Second Law of Thermodynamics can be stated in three equivalent
ways:

(1)   Heat flows spontaneously from a hotter to a colder object, but not
vice versa.

(2)   No heat engine that cycles continuously can change all its heat-in to
useful work-out.

(3)   If a system undergoes spontaneous change, it will change in such a
way that its entropy will increase or, at best, remain constant.

The Second Law tells us the manner in which a spontaneous change will
occur, while the First Law tells us whether or not the change is possible. The
First Law deals with the conservation of energy; the Second Law deals with
the dispersal of energy.

Entropy (S) is a state variable for a system in equilibrium. By this is meant
that S is always the same for the system when it is in a given equilibrium
state. Like P, V, and U, the entropy is a characteristic of the system at
equilibrium.

When heat ∆Q enters a system at an absolute temperature T, the resulting
change in entropy of the system is

provided the system changes in a reversible way. The SI unit for entropy is
J/K. When heat flows into a system its entropy increases.



A reversible change (or process) is one in which the values of P, V, T,
and U are well-defined during the change. If the process is reversed, then P,
V, T, and U will take on their original values when the system is returned to
where it started. To be reversible, a process must usually be slow, and the
system must be close to equilibrium during the entire change.

Another fully equivalent definition of entropy can be given from a
detailed molecular analysis of the system. If a system can achieve a
particular state (i.e., particular values of P, V, T, and U) in Ω (omega)
different ways (different arrangements of the molecules, for example), then
the entropy of the state is

where ln is the logarithm to base e, and kB is Boltzmann’s constant, 1.38 ×
10–23 J/K.

Entropy Is a Measure of Disorder:   A state that can occur in only one
way (one arrangement of its molecules, for example) is a state of high order.
But a state that can occur in many ways is a more disordered state. One way
to associate a number with disorder is to take the disorder of a state as being
proportional to Ω, the number of ways the state can occur. Because S = kB,
ln Ω, entropy is a measure of disorder.

Spontaneous processes in systems that contain many molecules always
occur in a direction from a

Hence, when left to themselves, systems either retain their original state of
order or else increase their disorder.

The Most Probable State of a system is the state with the largest entropy.
It is also the state with the most disorder and the state that can occur in the
largest number of ways.

The Dispersal of Energy: We can think of entropy as a measure of the
dispersal of energy. When energy is concentrated in a region, given the
opportunity, it tends to spontaneously spread out from that region. For
example, imagine a collection of hot atoms introduced into a corner of an



isolated empty chamber. This highly ordered state will quickly evolve, as
the atoms promptly separate filling the space. The final equilibrium state is a
maximum entropy configuration corresponding to uniformity and the
ultimate in disorder—energy will have dispersed throughout the chamber.

PROBLEM SOLVING GUIDE

Again, not all physics textbooks incorporate the Δ sign the same way in the
Second Law. Often Q represents heat in or out of a system rather than the
more explicit ΔQ. All temperatures must be absolute. The change in entropy
given in Eq. (21.1) occurs at a fixed temperature. Remember that ΔS is a
state variable; it only depends on the initial and final states of the system.
Hence, entropy can be determined using any process that has the system in
the same initial and final states. When applying Eq. (21.1), remember that
heat that leaves the system is negative.

SOLVED PROBLEMS

21.1 [I]    Twenty grams of ice at precisely 0 °C melts into water with no
change in temperature. By how much does the entropy of the 20-g
mass change in this process?

By slowly adding heat to the ice, we can melt it in a reversible
way. The heat needed is

Notice that melting increases the entropy (and disorder); ice is
more ordered than water.

21.2 [I]    As depicted in Fig. 21-1, an ideal gas is confined to a cylinder by a
piston. The piston is pushed down slowly so that the gas
temperature remains at 20.0 °C. During the compression, 730 J of
work is done on the gas. Find the entropy change of the gas.



Fig. 21-1

The First Law tells us that

∆Q = ∆U + ∆W

Because the process was isothermal, the internal energy of the
ideal gas did not change. Therefore, ∆U = 0 and

∆Q = ∆W = –730 J

(Because the gas was compressed, the gas did negative work,
hence the minus sign. In other words, the work done on the gas is
negative.) Now we can write

Notice that the entropy change is negative. The disorder of the gas
decreased as it was pushed into a smaller volume.

21.3 [II]    As shown in Fig. 21-2, a container is separated into two equal-
volume compartments. The two compartments contain equal
masses of the same gas, 0.740 g in each, and cυ for the gas is 745
J/kg·K. At the start, the hot gas is at 67.0 °C, while the cold gas is
at 20.0 °C. No heat can leave or enter the compartments except
slowly through the partition AB. Find the entropy change of each
compartment as the hot gas cools from 67.0 °C to 65.0 °C.



Fig. 21-2

The heat lost by the hot gas in the process is

∆Q = mcυ ∆T = (0.000740 kg)(745 J/kg·K)(–2.0 °C) = –1.10 J

The entropy change is for a constant-temperature process, so we
will have to approximate what’s going on. For the hot gas (taking
the temperature to be a constant 66 °C),

The cold gas will gain 1.10 J, and go from 20.0 °C to 22.0 °C.
Take its temperature to be a constant 21.0 °C, whereupon

As you can see, the entropy changes were different for the two
compartments; more was gained than was lost. The total entropy
of the universe increased as a result of this process.

21.4 [II]    The ideal gas in the cylinder in Fig. 21-1 is initially at conditions
P1, V1, T1. It is slowly expanded at constant temperature by
allowing the piston to rise. Its final conditions are P2, V2, T1,
where V2 = 3V1. Find the change in entropy of the gas during this
expansion. The mass of gas is 1.5 g, and M = 28 kg/kmol for it.

Recall from Chapter 20 that, for an isothermal expansion of an
ideal gas (where ∆U = 0),



where we have used the Ideal Gas Law. Substituting the data leads
to

21.5 [I]    Two vats of water, one at 87 °C and the other at 14 °C, are
separated by a metal plate. If heat flows through the plate at 35
cal/s, what is the change in entropy of the system that occurs in a
time of one second?

The higher-temperature vat loses entropy, while the cooler one
gains entropy:

Therefore, 0.51 J/K – 0.41 J/K = 0.10 J/K.

21.6 [I]    A system consists of 3 coins that can come up either heads or tails.
In how many different ways can the system have (a) all heads up?
(b) All tails up? (c) One tail and two heads up? (d) Two tails and
one head up?

(a)   There is only one way all the coins can be heads-up: Each
coin must be heads up.

(b)   Here, too, there is only one way.

(c)   There are three ways, corresponding to the three choices for
the coin showing the tail.

(d)   By symmetry with (c), there are three ways.

21.7 [I]    Find the entropy of the three-coin system described in Problem



21.6 if (a) all coins are heads up, (b) two coins are heads up.

We use the Boltzmann relation S = kB ln Ω, where Ω is the number
of ways the state can occur, and kB = 1.38 × 10–23 J/K.

(a)   Since this state can occur in only one way,

S = kB ln 1 = (1.38 × 10–23 J/K)(0) = 0

(b)   Since this state can occur in three ways,

S = (1.38 × 10–23 J/K) ln 3 = 1.52 × 10–23 J/K

SUPPLEMENTARY PROBLEMS

21.8 [I]      Compute the entropy change of 5.00 g of water at 100 °C as it
changes to steam at 100 °C under standard pressure.

21.9 [I]      Heat in the amount of 100 kJ is transferred out of a reservoir that
is sustained at 500 K. Determine the resulting entropy change of
the reservoir. Is the reservoir’s entropy increased or decreased?
[Hint: Heat-out is negative.]

21.10 [I]     Heat in the amount of 100 kJ is transferred into a reservoir that is
sustained at 100 K. Determine the resulting entropy change of the
reservoir. Is the reservoir’s entropy increased or decreased?
[Hint: Heat-in is positive.]

21.11 [I]     Heat in the amount of 100 kJ is transferred out of a reservoir that
is sustained at 800 K, into a reservoir that is sustained at 200 K.
Determine the resulting total entropy change. Is entropy
increased or decreased?

21.12 [I]     Imagine a flexible chamber containing an ideal gas. Heat is



allowed to enter the chamber, which is kept at a constant
temperature of 30.0 °C while it is expanded by the gas, doubling
in volume. Suppose 100 J of work is done by the gas. Determine
the change in its entropy. [Hint: What do we know about the
change in internal energy?]

21.13 [II]    An insulated chamber (allowing no heat to flow in or out)
contains an ideal gas at a temperature T and volume Vi. That
chamber is attached to an identical chamber via a small valve.
The valve is opened, and some of the gas flows freely into the
second chamber. There is nothing for it to push on, and no work
is done. The gas is more dispersed, and its energy is more
dispersed. Determine an equation for the associated change in
entropy. [Hint: Since ΔU = ΔW = 0, the process is isothermal;
hence use Eq. (20.8).]

21.14 [I]     Two moles of an ideal gas undergo an isothermal free expansion
doubling in volume. Determine the change in entropy. Give your
answer to three significant figures. [Hint: Study the previous
problem and go back to Eq. (16.1) for R. Since energy is
dispersed, ΔS should be positive.]

21.15 [I]     By how much does the entropy of 300 g of a metal (c = 0.093
cal/g· °C) change as it is cooled from 90 °C to 70 °C? You may
approximate T = (T1 + T2).

21.16 [II]    An ideal gas was slowly expanded from 2.00 m3 to 3.00 m3 at a
constant temperature of 30 °C. The entropy change of the gas
was +47 J/K during the process. (a) How much heat was added to
the gas during the process? (b) How much work did the gas do
during the process?

21.17 [II]    Starting at standard conditions, 3.0 kg of an ideal gas (M = 28
kg/kmol) is isothermally compressed to one-fifth of its original
volume. Find the change in entropy of the gas.

21.18 [I]     Four poker chips are red on one side and white on the other. In



how many different ways can (a) only 3 reds come up? (b) Only
two reds come up?

21.19 [II]    When 100 coins are tossed, there is one way in which all can
come up heads. There are 100 ways in which only one tail comes
up. There are about 1 × 1029 ways that 50 heads can come up.
One hundred coins are placed in a box with only one head up.
They are shaken and then there are 50 heads up. What was the
change in entropy of the coins caused by the shaking?

ANSWERS TO SUPPLEMENTARY PROBLEMS

21.8 [I]      7.24 cal/K = 30.3 J/K

21.9 [I]      –0.200 kJ/K; decreased

21.10 [I]     +1.00 kJ/K; increased

21.11 [I]     +0.375 kJ/K; increased

21.12 [I]     +0.330 J/K

21.13 [II]    ∆S = (PiVi/T) ln(Vf/Vi)

21.14 [I]     ∆S = nR ln(Vf/Vi) and ∆S = 11.5 J/K

21.15 [I]     –6.6 J/K

21.16 [II]    (a) 3.4 kcal; (b) 14 kJ

21.17 [II]    –1.4 kJ/K

21.18 [I]     (a) 4; (b) 6

21.19 [II]    9 × 10–22 J/K



Wave Motion

A Propagating Wave is a self-sustaining disturbance of a medium that
travels from one point to another, carrying energy and momentum.
Mechanical waves are aggregate phenomena arising from the motion of
constituent particles. The wave advances, but the particles of the medium
only oscillate in place. A wave has been generated on the string in Fig. 22-1
by the sinusoidal vibration of the hand at its end. Energy is carried by the
wave from the source to the right, along the string. This direction, the
direction of energy transport, is called the direction of propagation of the
wave.

Fig. 22-1

Each particle of the string (such as the one at point-C) vibrates up and
down, perpendicular to the direction of propagation. Any wave in which the
vibration direction is perpendicular to the direction of propagation is called
a transverse wave. Typical transverse waves, besides those on a string, are
electromagnetic waves (e.g., light and radio waves). By contrast, in sound
waves the vibration direction is parallel to the direction of propagation, as
you will see in Chapter 23. Such a wave is called a longitudinal (or



compressional) wave.

Wave Terminology: The period (T) of a wave is the time it takes the wave
to go through one complete cycle. It is the time taken for a particle, such as
the one at A, to move through one complete vibration or cycle, down from
point-A and then back to A. The period is the number of seconds per cycle.
The frequency (f) of a wave is the number of cycles per second: Thus,

If T is in seconds, then f is in hertz (Hz), where 1 Hz = 1 s−1. The period and
frequency of the wave are the same as the period and frequency of the
vibration.

The top points on the wave, such as A and C, are called wave crests. The
bottom points, such as B and D, are called troughs. As time goes on, the
crests and troughs move to the right with speed υ, the speed of the wave.

The amplitude of a wave is the maximum disturbance undergone during
a vibration cycle, distance y0 in Fig. 22-1.

The wavelength (λ) is the distance along the direction of propagation
between corresponding points on the wave, distance AC, for example. In a
time T, a crest moving with speed υ will move a distance λ to the right.
Therefore, s = υt and

whereupon

This relation holds for all waves, not just for waves on a string.

In-Phase Vibrations exist at two points on a wave if those points undergo
vibrations that are in the same direction, in step. For example, the particles
of the string at points-A and -C in Fig. 22-1 vibrate in-phase, since they
move up together and down together. Vibrations are in-phase if the points
are a whole number of wavelengths apart. The pieces of the string at A and
B vibrate opposite to each other; the vibrations there are said to be 180°, or
half a cycle, out-of-phase.



The Speed of a Transverse Wave on a stretched string or wire is

Standing Waves: At certain vibrational frequencies, a system can undergo
resonance. That is to say, it can efficiently absorb energy from a driving
source in its environment that is oscillating at that frequency (Fig. 22-2).
These and similar vibration patterns are called standing waves, as
compared to the propagating waves considered above. These might better
not be called waves at all, since they do not transport energy and
momentum. The stationary points (such as B and D) are called nodes; the
points of greatest motion (such as A, C, and E) are called antinodes. The
distance between adjacent nodes (or antinodes) is λ. We sometimes call the
portion of the string between adjacent nodes a segment, and the length of a
segment is also λ.

Fig. 22-2

Conditions for Resonance: A string will resonate only if the vibration
wavelength has certain special values: the wavelength must be such that a
whole number of wave segments (each λ long) exactly fit on the string. A
proper fit occurs when nodes and antinodes exist at positions demanded by



the constraints on the string. In particular, the fixed ends of the string must
be nodes. Thus, as shown in Fig. 22-2, the relation between the wavelength
λ and the length L of the resonating string is ), where n is any
integer. Because λ = υT = υ/f, the shorter the wave segments at resonance,
the higher will be the resonant frequency. If we call the fundamental
resonant frequency f1, then Fig. 22-2 shows that the higher resonant
frequencies are given by fn = nf1.

When driven at its natural or resonant frequency a mechanical system
(e.g., a wine glass, or a loose window on a bus) will absorb energy and
vibrate vigorously.

Longitudinal (Compression) Waves occur as lengthwise vibrations of air
columns, solid bars, and the like. At resonance, nodes exist at fixed points,
such as the closed end of an air column in a tube, or the location of a clamp
on a bar. Diagrams such as Fig. 22-2 are used to display the resonance of
longitudinal waves as well as transverse waves. However, for longitudinal
waves, the diagrams are mainly schematic and are used to indicate the
locations of nodes and antinodes. In analyzing such diagrams, we use the
fact that the distance between node and adjacent antinode is λ.

The speed of a compression wave in a solid or liquid depends on the
medium’s bulk modulus B [Eq. (12.7)] and its mass density ρ:

The larger B is, the more rigid the material. In the more specialized case of a
long, narrow solid rod, compression waves travel at a speed given by
Young’s modulus Y [Eq. (12.5)] and the mass density ρ:

The larger Y is, the more rigid the rod.

PROBLEM SOLVING GUIDE

As ever, be careful with the units. Enter everything into the equations in SI,
and the rest will take care of itself. It would be helpful to go back and
review Chapter 11. You might also refresh your memory of Chapter 12 and



the various moduli.

SOLVED PROBLEMS

22.1 [I]   Suppose that Fig. 22-1 represents a 50-Hz wave on a string. Take
distance y0 to be 3.0 mm, and distance AE to be 40 cm. Find the
following for the wave: its (a) amplitude, (b) wavelength, and (c)
speed.

(a) By definition, the amplitude is distance y0 and is 3.0 mm.

(b) The distance between adjacent crests is the wavelength, and so
λ = 20 cm.

(c) υ = λf = (0.20 m)(50 s−1) = 10 m/s

22.2 [I]   Measurements show that the wavelength of a sound wave in a
certain material is 18.0 cm. The frequency of the wave is 1900 Hz.
What is the speed of the sound wave?

From λ = υT = υ/f, which applies to all waves,

υ = λf = (0.180 m)(1900 s−1) = 342 m/s

22.3 [I]   A horizontal cord 5.00 m long has a mass of 1.45 g. What must be
the tension in the cord if the wavelength of a 120-Hz wave on it is
to be 60.0 cm? How large a mass must be hung from its end (say,
over a pulley) to give it this tension?

We know that the speed of a wave on a rope depends on both the
tension and the mass per unit length. Moreover,

The tension in the cord balances the weight of the mass hung at its



end. Therefore,

22.4 [II]  A uniform flexible cable is 20 m long and has a mass of 5.0 kg. It
hangs vertically under its own weight and is vibrated
(perpendicularly) from its upper end with a frequency of 7.0 Hz.
(a) Find the speed of a transverse wave on the cable at its
midpoint. (b) What are the frequency and wavelength at the
midpoint?

(b) Because wave crests do not pile up along a string or cable, the
number passing one point must be the same as that for any other
point. Therefore, the frequency, 7.0 Hz, is the same at all points.

To find the wavelength at the midpoint, we must use the speed we
found for that point, 9.9 m/s. That gives us

22.5 [II]  Suppose that Fig. 22-2 depicts standing waves on a metal string
under a tension of 88.2 N. Its length is 50.0 cm and its mass is
0.500 g. (a) Compute υ for transverse waves on the string. (b)
Determine the frequencies of its fundamental, first overtone, and
second overtone.

(b) We recall that the length of the segment is λ/2 and we use λ =
υ/f. For the fundamental:



For the second overtone:

22.6 [II]  A string 2.0 m long is driven by a 240-Hz vibrator at its end. The
string resonates in four segments forming a standing wave pattern.
What would be the speed of a transverse wave on such a string?

Let’s first determine the wavelength of the wave from part (d) of
Fig. 22-2. Since each segment is λ/2 long,

Then, using λ = υT = υ/f,

υ = fλ = (240 s−1)(1.0 m) = 0.24 km/s

22.7 [II]  A banjo string 30 cm long oscillates in a standing-wave pattern. It
resonates in its fundamental mode at a frequency of 256 Hz. What
is the tension in the string if 80 cm of the string have a mass of
0.75 g?

First we’ll find υ and then the tension. The string vibrates in one
segment when f = 256 Hz. Therefore, from Fig. 22-2(a):

The mass per unit length of the string is



22.8 [II]  A string vibrates in five segments at a frequency of 460 Hz. (a)
What is its fundamental frequency? (b) What frequency will cause
it to vibrate in three segments?

Detailed Method

If the string is n segments long, then from Fig. 22-2 we have n( λ)
= L. But λ = υ/fn, so L = n(υ/2fn). Solving for fn provides

We are told that f5 = 460 Hz, and so

Substituting this in the above relation gives

fn = (n)(92.0 Hz)

(a) f1 = 92.0 Hz.

(b) f3 = (3)(92 Hz) = 276 Hz

Alternative Method

Recall that for a string held at both ends, fn = nf1. Knowing that f5
= 460 Hz, it follows that f1 = 92.0 Hz and f3 = 276 Hz.

22.9 [II]  A string fastened at both ends resonates at 420 Hz and 490 Hz with
no resonant frequencies in between. Find its fundamental resonant



frequency.

In general, fn = nf1. We are told that fn = 420 Hz and fn+1 = 490 Hz.
Therefore,

420 Hz = nf1 and 490 Hz = (n + 1)f1

Subtract the first equation from the second to obtain f1 = 70.0 Hz.

22.10 [II]  A violin string resonates at its fundamental frequency of 196 Hz.
Where along the string must you place your finger so its
fundamental becomes 440 Hz?

For the fundamental, L = λ. Since λ = υ/f, it follows that f1 =
υ/2L. Originally, the string of length L1 resonated at a frequency of
196 Hz, and therefore

with a resonance at 440 Hz,

Eliminate υ from these two simultaneous equations and find

To obtain the desired resonance, the finger must shorten the string
to 0.445 of its original length.

22.11 [II]  A 60-cm-long bar, clamped at its middle, is vibrated lengthwise
by an alternating force at its end. (See Fig. 22-3.) Its fundamental
resonance frequency is found to be 3.0 kHz. What is the speed of
longitudinal waves in the bar?

Because its ends are free, the bar must have antinodes there. The
clamp point at its center must be a node. Therefore, the



fundamental resonance is as shown in Fig. 22-3. Because the
distance from node to antinode is always λ, we see that .
Since L = 0.60 m, we find λ = 1.20 m.

Then, from the basic relation (p. 274) λ = υ/f, we have

υ = λf = (1.20 m)(3.0 kHz) = 3.6 km/s

22.12 [II]  Compression waves (sound waves) are sent down an air-filled
tube 90 cm long and closed at one end. The tube resonates at
several frequencies, the lowest of which is 95 Hz. Find the speed
of sound waves in air.

The tube and several of its resonance forms are shown in Fig. 22-
4. Recall that the distance between a node and an adjacent
antinode is λ/4. In our case, the top resonance form applies, since
the segments are longest for it and its frequency is therefore
lowest. For that form, L = λ/4, so

λ = 4L = 4(0.90 m) = 3.6 m

Using λ = υT = υ/f gives

υ = λf = (3.6 m)(95 s−1) = 0.34 km/s

22.13 [II]  At what other frequencies will the tube described in Problem
22.12 resonate?

The first few resonances are shown in Fig. 22-4. We see that, at
resonance,



Fig. 22-3

Fig. 22-4

where n = 1, 3, 5, 7, …, is an odd integer, and λn is the resonant
wavelength. But λn = υ/fn, and so

where, from Problem 22.12, f1 = 95 Hz. The first few resonant
frequencies are thus 95 Hz, 0.29 kHz, 0.48 kHz, … .

22.14 [II]  A metal rod 40 cm long is dropped, end first, onto a wooden floor
and rebounds into the air. Compression waves of many
frequencies are thereby set up in the bar. If the speed of
compression waves in the bar is 5500 m/s, to what lowest-



frequency compression wave will the bar resonate as it rebounds?

Both ends of the bar will be free, and so antinodes will exist there.
In the lowest resonance form (i.e., the one with the longest
segments), only one node will exist on the bar, at its center, as
illustrated in Fig. 22-5. We will then have

Then, from λ = υT = υ/f,

Fig. 22-5

22.15 [II]  A rod 200 cm long is clamped 50 cm from one end, as shown in
Fig. 22-6. It is set into longitudinal vibration by an electrical
driving mechanism at one end. As the frequency of the driver is
slowly increased from a very low value, the rod is first found to
resonate at 3 kHz. What is the speed of sound (compression
waves) in the rod?

Fig. 22-6

The clamped point remains stationary, and so a node exists there.
Since the ends of the rod are free, antinodes exist there. The
lowest-frequency resonance occurs when the rod is vibrating in its



longest possible segments. In Fig. 22-6 we show the mode of
vibration that corresponds to this condition. Since a segment is the
length from one node to the next, then the length from A to N in
the figure is one-half segment. Therefore, the rod is two segments
long. This resonance form satisfies our restrictions about positions
of nodes and antinodes, as well as the condition that the bar
vibrate in the longest segments possible. Since one segment is λ/2
long,

L = 2(λ/2) or λ = L = 200 cm

Then, from λ = υT = υ/f,

υ = λf = (2.00 m)(3 × 103 s−1) = 6 km/s

22.16 [II]  (a) Determine the shortest length of pipe closed at one end that
will resonate in air when driven by a sound source of frequency
160 Hz. Take the speed of sound in air to be 340 m/s. (b) Repeat
the analysis for a pipe open at both ends.
(a) Figure 22-4(a) applies in this case. The shortest pipe will be

λ/4 long. Therefore,

(b) In this case the pipe will have antinodes at both ends and a
node at its center. Then,

22.17 [II]  A pipe 90 cm long is open at both ends. How long must a second
pipe, closed at one end, be if it is to have the same fundamental
resonance frequency as the open pipe?

The two pipes and their fundamental resonances are shown in Fig.
22-7. As can be seen in the diagram,



Fig. 22-7

22.18 [II]  A glass tube that is 70.0 cm long is open at both ends. Find the
frequencies at which it will resonate when driven by sound waves
that have a speed of 340 m/s.

A pipe that is open at both ends must have an antinode at each
end. It will therefore resonate as in Fig. 22-8. From the diagram it
can be seen that the resonance wavelengths λn are given by

Fig. 22-8



SUPPLEMENTARY PROBLEMS

22.19 [I]  The average person can hear sound waves ranging in frequency
from about 20 Hz to 20 kHz. Determine the wavelengths at these
limits, taking the speed of sound to be 340 m/s.

22.20 [I]  Radio station WJR broadcasts at 760 kHz. The speed of radio
waves is 3.00 × 108 m/s. What is the wavelength of WJR’s waves?

22.21 [I]  Radar waves with 3.4 cm wavelength are sent out from a
transmitter. Their speed is 3.00 × 108 m/s. What is their
frequency?

22.22 [I]  A string has its tension doubled; all else kept constant, what
happens to the speed of transverse waves that can be set up on the
string?

22.23 [I]  A string has its total mass doubled; all else kept constant, what
happens to the speed of transverse waves that can be set up on the
string?

22.24 [I]  A string has both its total mass and length doubled; all else kept
constant, what happens to the speed of transverse waves that can
be set up on the string?

22.25 [I]  A transverse wave is set up on a taut string. Its free end is wiggled
up and down at a rate of 10.0 cycles every second. What happens
to the wavelength of the waves when the oscillation rate is raised
to 20.0 cycles per second, all else kept constant?

22.26 [I]  A light cord 10.0 m long has a mass of 50.0 g. It hangs vertically
off the roof of a building. A man holding the bottom end of the
cord pulls down on it with a force of 200 N. He flicks the end
horizontally sending a transverse pulse up the cord. Ignore the
weight of the cord and determine the speed of the wave.

22.27 [I]  When driven by a 120-Hz vibrator, a string has transverse waves of



31 cm wavelength traveling along it. (a) What is the speed of the
waves on the string? (b) If the tension in the string is 1.20 N, what
is the mass of 50 cm of the string?

22.28 [I]  The wave shown in Fig. 22-9 is being sent out by a 60-cycle/s
vibrator. Find the following for the wave: (a) amplitude, (b)
frequency, (c) wavelength, (d) speed, (e) period.

Fig. 22-9

22.29 [II] A copper wire 2.4 mm in diameter is 3.0 m long and is used to
suspend a 2.0-kg mass from a beam. If a transverse disturbance is
sent along the wire by striking it lightly with a pencil, how fast
will the disturbance travel? The density of copper is 8920 kg/m3.

22.30 [I]  An explosion under the ocean creates a compression wave. Given
that the bulk modulus for seawater is 2.1 GPa, how fast does the
wave travel? [Hint: See Table 12-1.]

22.31 [I]  Show that the units are correct in Eqs. (22.4) and (22.5).

22.32 [I]  Someone bangs on the end of a long gold rod with a hammer,
creating a compression wave. How fast does it travel? [Hint: See
Tables 12-1 and 12-2.]

22.33 [I]  Show that the fundamental frequency of a taut string on a musical
instrument is given by

[Hint: Study Fig. 22-2 and Eqs. (22.2) and (22.3).]

22.34 [II] A string 180-cm-long resonates in a standing wave that has three
segments when driven by a 270-Hz vibrator. What is the speed of



the waves on the string?

22.35 [II] A string resonates in three segments at a frequency of 165 Hz.
What frequency must be used if it is to resonate in four segments?

22.36 [II] A flexible cable, 30 m long and weighing 70 N, is stretched by a
force of 2.0 kN. If the cable is struck sideways at one end, how
long will it take the transverse wave to travel to the other end and
return?

22.37 [II] A wire under tension vibrates with a fundamental frequency of 256
Hz. What would be the fundamental frequency if the wire were
half as long, twice as thick, and under one-fourth the tension?

22.38 [II] Steel and silver wires of the same diameter and same length are
stretched with equal tension. Their densities are 7.80 g/cm3 and
10.6 g/cm3, respectively. What is the fundamental frequency of the
silver wire if that of the steel is 200 Hz?

22.39 [II] A string has a mass of 3.0 g and a length of 60 cm. What must be
the tension so that when vibrating transversely its first overtone
has frequency 200 Hz?

22.40 [II] (a) At what point should a stretched string be plucked to make its
fundamental tone most prominent? At what point should it be
plucked and then at what point touched (b) to make its first
overtone most prominent and (c) to make its second overtone most
prominent?

22.41 [II] What must be the length of an iron rod that has the fundamental
frequency 320 Hz when clamped at its center? Assume
longitudinal vibration at a speed of 5.00 km/s.

22.42 [II] A rod 120 cm long is clamped at the center and is stroked in such a
way as to give its first overtone. Make a drawing showing the
location of the nodes and antinodes, and determine at what other
points the rod might be clamped and still emit the same tone.



22.43 [II] A metal bar 6.0 m long, clamped at its center and vibrating
longitudinally in such a manner that it gives its first overtone,
vibrates in unison with a tuning fork marked 1200 vibration/s.
Compute the speed of sound in the metal.

22.44 [II] Determine the length of the shortest air column in a cylindrical jar
that will strongly reinforce the sound of a tuning fork having a
vibration rate of 512 Hz. Use υ = 340 m/s for the speed of sound in
air.

22.45 [II] A long, narrow pipe closed at one end does not resonate to a tuning
fork having a frequency of 300 Hz until the length of the air
column reaches 28 cm. (a) What is the speed of sound in air at the
existing room temperature? (b) What is the next length of column
that will resonate to the fork?

22.46 [II] An organ pipe closed at one end is 61.0 cm long. What are the
frequencies of the first three overtones if υ for sound is 342 m/s?

ANSWERS TO SUPPLEMENTARY PROBLEMS

22.19 [I]    17 m, 1.7 cm

22.20 [I]    395 m

22.21 [I]    8.8 × 109 Hz = 8.8 GHz

22.22 [I]    They increase by a multiplicative factor of .

22.23 [I]    They decrease by a multiplicative factor of 1/ .

22.24 [I]    They are unchanged.

22.25 [I]    It is halved.



22.26 [I]    200 m/s

22.27 [I]    (a) 37 m/s; (b) 0.43 g

22.28 [I]    (a) 3.0 mm; (b) 60 Hz; (c) 2.00 cm; (d) 1.2 m/s; (e) 0.017 s

22.29 [II]   22 m/s

22.30 [I]    1.4 km/s

22.31 [I]    Pa/(kg/m3) = (N/m2)/(kg/m3) = [(kg · m/s2)/m2]/(kg/m3)

22.32 [I]    2.0 km/s

22.33 [I]    Use λ = 2L.

22.34 [II]   324 m/s

22.35 [II]   220 Hz

22.36 [II]   0.65 s

22.37 [II]   128 Hz

22.38 [II]   172 Hz

22.39 [II]   72 N

22.40 [II]   (a) center; (b) plucked at 1/4 of its length from one end, then
touched at center; (c) plucked at 1/6 of its length from one end,
then touched at 1/3 of its length from that end

22.41 [II]   7.81 m

22.42 [II]   20.0 cm from either end

22.43 [II]   4.8 km/s

22.44 [II]   16.6 cm



22.45 [II]   (a) 0.34 km/s; (b) 84 cm

22.46 [II]   420 Hz, 700 Hz, 980 Hz



Sound

Sound Waves are longitudinal compression waves in a material medium
such as air, water, or steel. When the compressions and rarefactions of the
waves strike the eardrum, they result in the sensation of sound, provided the
frequency of the waves is between about 20 Hz and 20 000 Hz. Waves with
frequencies above 20 kHz are called ultrasonic waves. Those with
frequencies below 20 Hz are called infrasonic waves.

Equations for Sound Speed: In an ideal gas of molecular mass M and
absolute temperature T, the speed of sound υ is given by

where R is the gas constant and γ is the ratio of specific heats cp/cυ. γ is
about 1.67 for monatomic gases (He, Ne, Ar) and about 1.40 for diatomic
gases (N2, O2, H2).

The speed of compression waves in other materials is given by

If the material is in the form of a solid bar, Young’s modulus Y is used. For
liquids and solids in bulk, one must use the bulk modulus. (See Table 23-1.)

The Speed of Sound in Air at 0 °C is 331.3 m/s. The speed increases with
temperature by about 0.61 m/s for each 1 °C rise. More precisely, sound
speeds υ1 and υ2 at absolute temperatures T1 and T2 are related by



The speed of sound is essentially independent of pressure, frequency, and
wavelength.

The Intensity (I) of any wave is the energy per unit area, per unit time; in
practice, it is the average power (Paυ) carried by the wave through a unit
area erected perpendicular to the direction of propagation of the wave.
Suppose that in a time Δt an amount of energy ΔE is carried through an area
ΔA that is perpendicular to the propagation direction of the wave. Then

TABLE 23-1
Speed of Sound in Various Materials (at 0 °C and 1 atm unless

otherwise noted)

It can be shown that for a sound wave with amplitude a0 and frequency f,
traveling with speed υ in a material of density ρ, the intensity is

If f is in Hz, ρ is in kg/m3, υ is in m/s, and a0 (the maximum displacement of
the atoms or molecules of the medium) is in m, then I is in W/m2. Note that 

, and that sort of relationship is true for all kinds of waves.

Loudness is a measure of the human perception of sound. Although a sound
wave of high intensity is perceived as louder than a wave of lower intensity,



the relation is far from linear. The sensation of sound is roughly
proportional to the logarithm of the sound intensity. But the exact relation
between loudness and intensity is complicated and not the same for all
individuals.

Intensity (or Sound) Level (β) is defined by an arbitrary scale that
corresponds roughly to the sensation of loudness. The zero on this scale
occurs when I0 = 1.00 × 10−12 W/m2, which corresponds roughly to the
weakest audible sound. The intensity level, in decibels, is then defined by

Notice that when I = I0 the sound level equals zero, since log10 1 = 0. The
decibel (dB) is a dimensionless unit. The normal ear can distinguish
between intensities that differ by an amount down to about 1 dB.

Beats: The alternations of maximum and minimum intensity produced by
the superposition of two waves of slightly different frequencies are called
beats. The number of beats per second is equal to the difference between the
frequencies of the two waves that are combined.

Doppler Effect: Suppose that a moving sound source emits a sound of
frequency fs. Let υ be the speed of sound, and let the source approach the
listener or observer at speed υs, measured relative to the medium conducting
the sound. Suppose further that the observer is moving toward the source at
speed υo, also measured relative to the medium. Then the observer will hear
a sound of frequency fo given by fo = fs[(υ + υo)/(υ − υs)]. In general

Draw an arrow from the observer to the source—that’s the positive
direction. When the velocity of the source is in that direction, we use the
plus sign in front of υs. And the same is true for υo and the observer; when
the velocity of the observer is in the direction of the observer-to-source
arrow, υo is preceded by a + sign in the equation.

When the source and observer are approaching each other, more wave



crests strike the ear each second than when both are at rest. This causes the
ear to perceive a higher frequency than that emitted by the source. When the
two are receding, the opposite effect occurs; the frequency appears to be
lowered.

Of course, when either the observer or the source is at rest, the
corresponding speed (either υo or υs) must be zero.

Interference Effects: Two sound waves of the same frequency and
amplitude may give rise to easily observed interference effects at a point
through which they both pass. If the crests of one wave fall on the crests of
the other, the two waves are said to be in-phase. In that case, they reinforce
each other and give rise to a high intensity at that point.

However, if the crests of one wave fall on the troughs of the other, the
two waves will exactly cancel each other. No sound will then be heard at the
point. We say that the two waves are then 180° (or a half wavelength) out-
of-phase.

Intermediate effects are observed if the two waves are neither in-phase
nor 180° out-of-phase, but have a fixed phase relationship somewhere in
between.

PROBLEM SOLVING GUIDE

Remember that all temperatures must be absolute and that 0.0 °C = 273.15
K. Keep in mind that to undo an expression such as log10 A = B, you raise
both sides as powers of 10, that is, exponentiate the expression

10log
10

 A = A = 10B

Another useful relationship is

log10 An = n log10 A

It would be helpful to review Chapter 22.

SOLVED PROBLEMS



23.1 [I]    An explosion occurs at a distance of 6.00 km from a person. How
long after the explosion does the person hear it? Assume the
temperature is 14.0 °C.

We need to determine the speed of sound at 14.0 °C, knowing its
value at 0 °C. Because the speed of sound increases by 0.61 m/s
for each 1.0 °C, the sought-after speed is

υ = 331 m/s + (0.61)(14) m/s = 340m/s

Using s = υt, the time taken is

23.2 [I]    To find how far away a lightning flash is, a rough rule is the
following: “Divide the time in seconds between the flash and the
sound, by three. The result equals the distance in km to the flash.”
Justify this.

The speed of sound is , and so the distance to
the flash is approximately

where t, the travel time of the sound, is in seconds and s is in
kilometers. The light from the flash travels so fast, 3 × 108 m/s,
that it reaches the observer almost instantaneously. Hence, t is
essentially equal to the time between seeing the flash and hearing
the thunder. The rule works.

23.3 [I]    Compute the speed of sound in neon gas at 27.0 °C. For neon, M =
20.18 kg/kmol.

Neon, being monatomic, has γ ≈ 1.67. Therefore, remembering
that T is the absolute temperature,



23.4 [II]    Find the speed of sound in a diatomic ideal gas that has a density
of 3.50 kg/m3 and a pressure of 215 kPa.

Using Eq. (23.2)

We used the fact that γ ≈ 1.40 for a diatomic ideal gas, as
discussed in Chapter 20.

23.5 [II]    A metal rod 60 cm long is clamped at its center. It resonates in its
fundamental mode when driven by longitudinal waves of 3.00
kHz. What is Young’s modulus for the material of the rod? The
density of the metal is 8700 kg/m3.

This same rod was discussed in Problem 22.11. It was shown there
that the speed of longitudinal waves in it is 3.6 km/s. We know
that , and so

Y = ρυ2 = (8700 kg/m3)(3600 m/s)2 = 1.1 × 1011 N/m2

23.6 [I]    What is the speed of compression waves (sound waves) in water?
The bulk modulus for water is 2.2 × 109 N/m2.

23.7 [I]    A tuning fork oscillates at 284 Hz in air. Compute the wavelength
of the tone emitted at 25 °C.

Remembering that the speed of sound increases by 0.61 m/s for
each 1 °C increase in temperature, at 25 °C,

υ = 331 m/s + (0.61)(25)m/s = 346 m/s



Using λ = υT = υ/f,

23.8 [II]    An organ pipe whose length is held constant resonates at a
frequency of 224.0 Hz when the air temperature is 15 °C. What
will be its resonant frequency when the air temperature is 24 °C?

The resonant wavelength must have the same value at each
temperature because it depends only on the length of the pipe. (Its
nodes and antinodes must fit properly within the pipe.) But λ = υ/f,
and so υ/f must be the same at the two temperatures.
Consequently,

At temperatures near room temperature, υ = (331 + 0.61Tc) m/s,
where Tc is the Celsius temperature. Then

23.9 [I]    An uncomfortably loud sound might have an intensity of 0.54
W/m2. Find the maximum displacement of the molecules of air in
a sound wave if its frequency is 800 Hz. Take the density of air to
be 1.29 kg/m3 and the speed of sound to be 340 m/s.

We are given I, f, ρ, and υ, and have to find a0. From ,

23.10 [I]  A sound has an intensity of 3.00×10−8 W/m2. What is the sound
level in dB?

Sound level is β where I0 = 100 × 10−12 W/m2 and



23.11 [II] A noise-level meter reads the sound level in a room to be 85.0 dB.
What is the sound intensity in the room?

Sound level (β), in dB, is given by β = 10 log10(I/I0) and here it
equals 85.0 dB. Accordingly,

23.12 [II] Two sound waves have intensities of 10μW/cm2 and 500μW/cm2.
What is the difference in their intensity levels?

Call the 10μW/cm2 sound A, and the other B. Then

Subtracting βA from βB,

23.13 [II] Find the ratio of the intensities of two sounds if one is 8.0 dB
louder than the other. We saw in Problem 23.12 that



In the present case this becomes

23.14 [II] A tiny sound source emits sound uniformly in all directions. The
intensity level at a distance of 2.0 m is 100 dB. How much sound
power is the source emitting?

The energy emitted by a point source can be considered to flow
out through a spherical surface, which has the source at its center.
Hence, if we find the rate of flow through such a surface, it will
equal the flow from the source. Take a concentric sphere of radius
2.0 m. We know that the sound level on its surface is 100 dB. You
can show that this corresponds to I = 0.010 W/m2. Thus, the
energy flowing each second through each m2 of surface is 0.010
W. The total energy flow through the spherical surface is then
I(4πr2), where I = 0.010 W/m2 and r = 2.0 m:

Power from source = (0.010 W/m2)(4π)(2 m)2 = 0.50 W

Notice how little power issues as sound from even such an intense
source.

23.15 [III] Back in the days before computers, a single typist typing furiously
could generate an average sound level nearby of 60.0 dB. What
would be the decibel level in the vicinity if three equally noisy
typists were working close to one another?

If each typist emits the same amount of sound energy, then the
final sound intensity If should be three times the initial intensity Ii.
We have



Subtracting these yields the change in sound level in going from Ii
to If = 3Ii,

The sound level, being a logarithmic measure, rises very slowly
with the number of sources.

Alternative Method

23.16 [I]  An automobile moving at 30.0 m/s is approaching a factory whistle
that has a frequency of 500 Hz. (a) If the speed of sound in air is
340 m/s, what is the apparent frequency of the whistle as heard by
the driver? (b) Repeat for the case of the car leaving the factory at
the same speed.

This is a Doppler shift problem. Draw an arrow from observer to
source; this is the positive direction. Here in part (a) the observer
is moving in the positive direction, and υs = 0. Hence, use +υo and
so

With the car leaving in the negative direction use −υo and

23.17 [I]  A car moving at 20 m/s with its horn blowing (f = 1200 Hz) is
chasing another car going at 15 m/s in the same direction. What is
the apparent frequency of the horn as heard by the driver being
chased? Take the speed of sound to be 340 m/s.

This is a Doppler problem. Draw the observer-to-source arrow;



that’s the positive direction (see Fig. 23-1). Both the source and
the observer are moving in the negative direction. Hence, we use
−υo and −υs.

Because the source is approaching the observer, the latter will
measure an increase in frequency.

Fig. 23-1

23.18 [I]  When two tuning forks are sounded simultaneously, they produce
one beat every 0.30 s. (a) By how much do their frequencies
differ? (b) A tiny piece of chewing gum is placed on a prong of
one fork. Now there is one beat every 0.40 s. Was this tuning fork
the lower- or the higher-frequency fork?

The number of beats per second equals the frequency difference.

Adding gum to the prong increases its mass and thereby decreases
its vibrational frequency. This lowering of frequency caused it to



come closer to the frequency of the other fork. Hence, the fork in
question had the higher frequency.

23.19 [II] A tuning fork having a frequency of 400 Hz (shown in Fig. 23-2) is
moved away from an observer and toward a flat wall with a speed
of 2.0 m/s. What is the apparent frequency (a) of the unreflected
sound waves coming directly to the observer, and (b) of the sound
waves coming to the observer after reflection? (c) How many
beats per second are heard? Assume the speed of sound in air to be
340 m/s.

Fig. 23-2

(a) The fork, the source, is receding from the observer in the
positive direction and so we use +υs. It doesn’t matter what the
sign associated with υo is since υo = 0.

The source is moving away from the observer and the
frequency is properly shifted down from 400 Hz to 398 Hz.

(b) Think of the wall as a source that reflects sound of the same
frequency as that which impinges upon it. The wave crests
reaching the wall are closer together than normally because the
fork is moving toward the wall. Therefore, the wall will appear



as a stationary source emitting sound of a higher frequency than
400 Hz due to the 2.0-m/s motion of the fork. Alternatively we
can think of the reflected wave as if it came from a source (the
wall) moving at 2.0 m/s toward the observer. Hence, we enter
−υs:

and the frequency is properly shifted up.

(c) Beats per second = Difference between frequencies = (402.4 −
397.7) Hz = 4.7 beats per second

23.20 [I]  In Fig. 23-3, S1 and S2 are identical sound sources. They send out
their wave crests simultaneously (the sources are in phase). For
what values of L1 − L2 will constructive interference obtain and a
loud sound be heard at point P?

If L1 = L2, the waves from the two sources will take equal times to
reach P. Crests from one will arrive there at the same times as
crests from the other. The waves will therefore be in phase at P
and an interference maximum will result.

Fig. 23-3

If L1 = L2 + λ, then the wave from S1 will be one wavelength
behind the one from S2 when they reach P. But because the wave
repeats each wavelength, a crest from S1 will still reach P at the
same time a crest from S2 does. Once again the waves are in phase
at P and an interference maximum will exist there.

In general, a loud sound will be heard at P when L1 − L2 = ±nλ,



where n is an integer.

23.21 [II] The two sound sources in Fig. 23-3 vibrate in-phase. A loud sound
is heard at P when L1 = L2. As L1 is slowly increased, the weakest
sound is heard when L1 − L2 has the values 20.0 cm, 60.0 cm, and
100 cm. What is the frequency of the sound source if the speed of
sound is 340 m/s?

The waves coming down directly from the fork toward the guy
must be a little longer (more spaced) than the waves going up
from the fork and back down from the wall, which have the same
spacings.

The weakest sound will be heard at P when a crest from S1 and a
trough from S2 reach there at the same time. This will happen if L1

− L2 is λ, or λ + λ, or 2λ + λ, and so on. Hence, the increase in
L1 between weakest sounds is λ, and from the data we see that λ =
0.400 m. Then, from λ = υ/f,

SUPPLEMENTARY PROBLEMS

23.22 [I]  Three seconds after a gun is fired, the person who fired the gun
hears an echo. How far away was the surface that reflected the
sound of the shot? Use 340 m/s for the speed of sound.

23.23 [I]  What is the speed of sound in air when the air temperature is 31
°C?

23.24 [I]  A longitudinal wave with a frequency of 100 Hz has a wavelength
of 4.00 m. Determine its speed.



23.25 [I]  If the speed of sound in air is found to be 343.2 m/s, what is the
temperature of that air?

23.26 [I]  An autofocusing camera sends out a pulse of ultrasound and
determines distance from the time of return. Roughly what is the
operative speed of sound? How far is the subject from the camera
if the time interval between launch and return is 8.00 ms when the
temperature of the air is 23.50 °C?

23.27 [I]  It’s often claimed that for every second of delay between seeing a
flash of lightning and hearing the thunder, it means the strike was
1/5 mile away. Is that reasonable? How far does sound travel in
5.00 s at an air temperature of 20.0 °C?

23.28 [II] A shell fired at a target 800 m away was heard by someone
standing near the gun to strike the target 5.0 s after leaving the
gun. Compute the average horizontal velocity of the shell. The air
temperature is 20 °C.

23.29 [II] In an experiment to determine the speed of sound, two observers,
A and B, were stationed 5.00 km apart. Each was equipped with a
gun and a stopwatch. Observer-A heard the report of B’s gun 15.5
s after seeing its flash. Later, A fired his gun and B heard the
report 14.5 s after seeing the flash. Determine the speed of sound
and the component of the speed of the wind along the line joining
A to B.

23.30 [II] A disk has 40 holes around its circumference and is rotating at
1200 rpm. Determine the frequency and wavelength of the tone
produced by the disk when a jet of air is blown against it. The
temperature is 15 °C.

23.31 [I]  The bulk modulus of seawater is 2.1 GPa. Calculate the
approximate speed of sound in the ocean. [Hint: Use Table 12-1.]

23.32 [I]  Use Eq. (23.2) to determine the approximate speed of sound in dry
air at S.T.P. [Hint: Take γ to be 1.40 and use Table 12-1.]



23.33 [I]  Compute the speed of sound in helium gas at 800 °C. [Hint: Take γ
to be 1.67.]

23.34 [II] Determine the speed of sound in carbon dioxide (M = 44 kg/kmol,
γ = 1.30) at a pressure of 0.50 atm and a temperature of 400 °C.

23.35 [II] Compute the molecular mass M of a gas for which γ = 1.40 and in
which the speed of sound is 1260 m/s at precisely 0 °C.

23.36 [II] At S.T.P., the speed of sound in air is 331 m/s. Determine the
speed of sound in hydrogen at S.T.P. if the specific gravity of
hydrogen relative to air is 0.069 0 and if γ = 1.40 for both gases.

23.37 [II] Helium is a monatomic gas that has a density of 0.179 kg/m3 at a
pressure of 76.0 cm of mercury and a temperature of precisely 0
°C. Find the speed of compression waves (sound) in helium at this
temperature and pressure.

23.38 [II] A bar of dimensions 1.00 cm2 × 200 cm and mass 2.00 kg is
clamped at its center. When vibrating longitudinally, it emits its
fundamental tone in unison with a tuning fork making 1000
vibration/s. How much will the bar be elongated if, when clamped
at one end, a stretching force of 980 N is applied at the other end?
[Hint: Look at Problem 22.11 and Chapter 12.]

23.39 [I]  Find the speed of compression waves in a metal rod if the material
of the rod has a Young’s modulus of 1.20 × 1010 N/m2 and a
density of 8920 kg/m3.

23.40 [II] An increase in pressure of 100 kPa causes a certain volume of
water to decrease by 5 × 10−3 percent of its original volume. (a)
What is the bulk modulus of water? (b) What is the speed of sound
(compression waves) in water?

23.41 [I]  The level of normal speech exchanged with a person 1.0 m away
corresponds to an intensity of about 10−6 W/m2. Determine the
intensity level (β) of the sound. [Hint: Study Eq. (23.7). Recall that



log10(10n) = n.]

23.42 [I]  The threshold of human hearing is an intensity of about 10–12

W/m2. Determine the corresponding intensity level using your
calculator. Make sure to distinguish between the keys for ln and
log even though it doesn’t matter in this special case. Do the
calculation again, this time with the intensity at the threshold of
pain where I0 = 1 W/m2.

23.43 [II] A machine produces a sound level of 80 dB at the location of a
detector. What would be the new sound level at the detector if an
identical machine at the same distance was now turned on adding
to the tumult? [Hint: Intensity levels do not simply add, whereas
intensities do.]

23.44 [I]  Suppose the intensity of sound increases by a multiplicative factor
of 10.0, going from say 1.0 W/m2 to 10 W/m2 to 100 W/m2 and so
on. By how much is the intensity level increased each time?

23.45 [I]  If the intensity level of sound is to be decreased from 130 dB to
110 dB and if the initial intensity is Ii, what will be the final
intensity If? [Hint: Study the previous problem.]

23.46 [I]  Suppose we add ±3.0 dB to the intensity level of sound in a room.
What happens to the intensity as measured in W/m2?

23.47 [I]  If the intensity of sound changes, the sound level will change.
Suppose then that the sound level goes from βi to βf such that βf −
βi = Δβ. Show that

[Hint: Remember that log10 A − log10 B = log10 A/B.]

23.48 [I]  Redo Problem 23.45 using Eq. (23.9).

23.49 [I]  A sound has an intensity of 5.0 × 10−7 W/m2. What is its intensity



level?

23.50 [I]  A person riding a power mower may be subjected to a sound of
intensity 2.00 × 10−2 W/m2. What is the intensity level to which
the person is subjected?

23.51 [II] A rock band might easily produce a sound level of 107 dB in a
room. To two significant figures, what is the sound intensity at
107 dB?

23.52 [II] A whisper has an intensity level of about 15 dB. What is the
corresponding intensity of the sound?

23.53 [II] What sound intensity is 3.0 dB louder than a sound of intensity of
10 μW/cm2?

23.54 [II] Calculate the intensity of a sound wave in air at precisely 0 °C and
1.00 atm if its amplitude is 0.002 0 mm and its wavelength is 66.2
cm. The density of air at S.T.P. is 1.293 kg/m3.

23.55 [II] What is the amplitude of vibration in a 8000 Hz sound beam if its
intensity level is 62 dB? Assume that the air is at 15 °C and its
density is 1.29 kg/m3.

23.56 [II] One sound has an intensity level of 75.0 dB, while a second has an
intensity level of 72.0 dB. What is the intensity level when the two
sounds are combined?

23.57 [II] An organ pipe is tuned to emit a frequency of 196.00 Hz. When it
and the G string of a violin are sounded together, ten beats are
heard in a time of exactly 8 s. The beats become slower as the
violin string is slowly tightened. What was the original frequency
of the violin string?

23.58 [I]  A locomotive moving at 30.0 m/s approaches and passes a person
standing beside the track. Its whistle is emitting a note of
frequency 2.00 kHz. What frequency will the person hear (a) as
the train approaches and (b) as it recedes? The speed of sound is



340 m/s.

23.59 [II] Two cars are heading straight at each other with the same speed.
The horn of one (f = 3.0 kHz) is blowing, and is heard to have a
frequency of 3.4 kHz by the people in the other car. Find the speed
at which each car is moving if the speed of sound is 340 m/s.

23.60 [II] To determine the speed of a harmonic oscillator, a beam of sound
is sent along the line of the oscillator’s motion. The sound, which
is emitted at a frequency of 8000.0 Hz, is reflected straight back
by the oscillator to a detector system. The detector observes that
the reflected beam varies in frequency between the limits of
8003.1 Hz and 7996.9 Hz. What is the maximum speed of the
oscillator? Take the speed of sound to be 340 m/s.

23.61 [II] In Fig. 23-1 are shown two identical sound sources sending waves
to point P. They send out wave crests simultaneously (they are in-
phase), and the wavelength of the wave is 60 cm. If L2 = 200 cm,
give the values of L1 for which (a) maximum sound is heard at P
and (b) minimum sound is heard at P.

23.62 [II] The two sources shown in Fig. 23-4 emit identical beams of sound
(λ = 80 cm) toward one another. Each sends out a crest at the same
time as the other (the sources are in-phase). Point P is a position of

Fig. 23-4

maximum intensity, that is, loud sound. As one moves from P
toward Q, the sound decreases in intensity. (a) How far from P
will a sound minimum first be heard? (b) How far from P will a
loud sound be heard once again?



ANSWERS TO SUPPLEMENTARY PROBLEMS

23.22 [I]    510 m

23.23 [I]    0.35 km/s

23.24 [I]    400 m/s

23.25 [I]    293.1 K

23.26 [I]    345.3 m/s; (2.76 m)/2 = 1.38 m

23.27 [I]    close (343.2 m/s)(5.00 s) = 1.716 km = 1.067 mi;

23.28 [II]   0.30 km/s

23.29 [II]   334 m/s, 11.1 m/s

23.30 [II]   0.80 kHz, 0.43 m

23.31 [I]    1.4 km/s

23.32 [I]    332 m/s

23.33 [I]    1.93 km/s

23.34 [II]   0.41 km/s

23.35 [II]   2.00 kg/kmol (hydrogen)

23.36 [II]   1.26 km/s

23.37 [II]   970 m/s

23.38 [II]   0.123 mm

23.39 [I]    1.16 km/s

23.40 [II]   (a) 2 × 109 N/m2; (b) 1 km/s



23.41 [I]    60 dB

23.42 [I]    0 dB; 120 dB

23.43 [I]    10 log10 2 × 108 = 83 dB

23.44 [I]    increases by 10 dB

23.45 [I]    If = Ii/100

23.46 [I]    The intensity doubles with +3.0 dB and halves with −3.0 dB.

23.48 [I]    If/Ii = 102

23.49 [I]    57 dB

23.50 [I]    103 dB

23.51 [II]   0.050 W/m2

23.52 [II]   3.2 × 10−11 W/m2

23.53 [II]   20 μW/cm2

23.54 [II]   8.4 × 10−3 W/m2

23.55 [II]   1.7 × 10−9 m

23.56 [II]   76.8 dB

23.57 [II]   194.75 Hz

23.58 [I]    (a) 2.19 kHz; (b) 1.84 kHz

23.59 [II]   21 m/s

23.60 [II]   0.132 m/s



23.61 [II]   (a) (200 ± 60n) cm, where n = 0, 1, 2, …; (b) (230 ± 60n) cm,
where n = 0, 1, 2, … .

23.62 [II]   (a) 20 cm; (b) 40 cm



Coulomb’s Law and Electric Fields

Coulomb’s Law: Suppose that two point charges, q• and , are a distance r
apart in vacuum. If q• and  have the same sign, the two charges repel each
other; if they have opposite signs, they attract each other. The force
experienced by either charge due to the other is called a Coulomb or
electric force and it is given by Coulomb’s Law

Textbooks vary somewhat on how they write Coulomb’s Law, though the
different statements are more or less equivalent. Here Eq. (24.1) is the
traditional and most common statement, usually without the dots that
remind us we are dealing with point charges or small charged spheres. Some
books give the law as

Because charge can be positive or negative, the force can be positive
(repulsive) or negative (attractive). To try to avoid sign confusion, some
authors write the law as

while still others give it as

As always in the SI, distances are measured in meters, and forces in
newtons. The SI unit for charge is the coulomb (C). The constant k0



(corresponding to vacuum) in Coulomb’s Law has the value

which is often approximated as 9.0 × 109 N · m2/C2. Often, k0 is replaced by
1/4πε0, where ε0 = 8.85 × 10−12 C2/N · m2 is called the permittivity of free
space. Then Coulomb’s Law becomes

When the surrounding medium is not a vacuum, forces caused by
induced charges in the material reduce the force between point charges. If
the material has a dielectric constant K, then ε0 in Coulomb’s Law must be
replaced by Kε0 = ε, where ε is called the permittivity of the material. Then

For vacuum, K = 1; for air, K = 1.000 6. See Table 24-1.

TABLE 24-1
The Permittivity (ε) and Relative Permittivity* (ε/ε0) of Some Common

Substances

Coulomb’s Law also applies to charged conducting spheres and spherical
shells, as well as to uniform spheres of charge. This is true provided that
these are all small enough, in comparison to their separations, so that the
charge distribution on each doesn’t become asymmetrical when two or more



of them interact. In that case, r, the distance between the centers of the
spheres, must be much larger than the sum of the radii of the two spheres.

Charge Is Quantized: The magnitude of the smallest charge ever measured
is denoted by e (called the quantum of charge), where e = 1.602 18 × 10−19

C. All free charges, ones that can be isolated and measured, are integer
multiples of e. The electron has a charge of −e, while the proton’s charge is
+e. Although there is good reason to believe that quarks carry charges of
magnitude e/3 and 2e/3, they only exist in bound systems that have a net
charge equal to an integer multiple of e.

Conservation of Charge: The algebraic sum of the charges in the universe
is constant. When a particle with charge +e is created, a particle with charge
−e is simultaneously created in the immediate vicinity. When a particle with
charge +e disappears, a particle with charge −e also disappears in the
immediate vicinity. Hence, the net charge of the universe remains constant.

The Test-Charge Concept: A test-charge is a very small charge that can
be used in making measurements on an electric system. It is assumed that
such a charge, which is tiny both in magnitude and physical size, has a
negligible effect on its environment.

An Electric Field is said to exist at any point in space when a test charge,
placed at that point, experiences an electrical force. The direction of the
electric field at a point is the same as the direction of the force experienced
by a positive test charge placed at the point.

Electric field lines can be used to sketch electric fields. The line through
a point has the same direction at that point as the electric field. Where the
field lines are closest together, the electric field is largest. Field lines come
out of positive charges (because a positive charge repels a positive test
charge) and come into negative charges (because they attract the positive
test charge).

The Strength of the Electric Field ( ) at a point is equal to the force
experienced by a unit positive test charge placed at that point. Because the
electric field strength is a force per unit charge, it is a vector quantity. The
units of  are N/C or (see Chapter 25) V/m.

If a charge q is placed at a point where the electric field due to other



charges is , the charge will experience a force  given by

If q is negative,  will be opposite in direction to .

Electric Field Due to a Point Charge: To find E (the signed magnitude of 
) due to a point charge q•, we make use of Coulomb’s Law. If a point

charge  is placed at a distance r from the charge q•, it will experience a
force

But if a point charge  is placed at a position where the electric field is E,
then the force on  is

Comparing these two expressions for FE, we see that the electric field of a
point charge q• is

The same relation applies at points outside of a small spherical charge q. For
q positive, E is positive and  is directed radially outward from q; for q
negative, E is negative and  is directed radially inward.

Superposition Principle: The force experienced by a charge due to other
charges is the vector sum of the Coulomb forces acting on it due to these
other charges. Similarly, the electric intensity  at a point due to several
charges is the vector sum of the intensities due to the individual charges.

PROBLEM SOLVING GUIDE

Since 1.0 coulomb (1.0 C) is a very large amount of charge, many problems
are stated in terms of microcoulombs (1.0 μC = 1.0 × 10−6 C) or



nanocoulombs (1.0 nC = 1.0 × 10−9 C). When finding either the force or the
field of more than one charge, create a diagram. Draw in the several force
(or field) vectors (see Problem 24.5). Then, calculate the numerical values
of those vectors. The signs simply tell you if the force is attractive or
repulsive. Once you have the vector diagram, you can ignore the signs. The
vectors contain the signs in the usual way. A vector to the right is positive;
one to the left is negative. Up is positive; down is negative. Don’t forget to
square the distances (r) in Eqs. (24.1), (24.3), (24.4), and (24.7).

SOLVED PROBLEMS

24.1 [I]     Two small spheres in vacuum are 1.5 m apart center-to-center.
They carry identical charges. Approximately how large is the
charge on each if each sphere experiences a force of 2 N?

The diameters of the spheres are small compared to the 1.5 m
separation. We may therefore approximate them as point charges.
Coulomb’s Law, FE = k0q•1q•2/r2, leads to

from which q = 2 × 10−5 C.

24.2 [I]     Repeat Problem 24.1 if the spheres are separated by a center-to-
center distance of 1.5 m in a large vat of water. The dielectric
constant of water is about 80.

From Coulomb’s Law,

where K, the dielectric constant, is now 80. Then



24.3 [I]     A helium nucleus has a charge of +2e, and a neon nucleus has a
charge of +10e, where e is the quantum of charge, 1.60 × 10−19 C.
Find the repulsive force exerted on one by the other when they are
separated by a distance of 3.0 nanometers (1 nm = 10−19 m).
Assume the system to be in vacuum.

Nuclei have radii of order 10−15 m. We can assume them to be
point charges in this case. Then

24.4 [II]  In the Bohr model of the hydrogen atom, an electron (q = −e)
circles a proton (q′ = e) in an orbit of radius 5.3 × 10−11 m. The
attraction between the proton and electron furnishes the centripetal
force needed to hold the electron in orbit. Find (a) the force of
electrical attraction between the particles and (b) the electron’s
speed. The electron mass is 9.1 × 10−31 kg.

The electron and proton are essentially point charges.
Accordingly,

(b) The force found in (a) is the centripetal force, mυ2/r. Therefore,

from which it follows that

24.5 [II]  Three point charges in vacuum are placed on the x-axis in Fig. 24-
1. Find the net force on the −5 μC charge due to the two other
charges.

Because unlike charges attract, the forces on the −5 µC charge are
as shown. The magnitudes of  and  are given by Coulomb’s



Law:

Fig. 24-1

Keep in mind the following: (1) Proper units (coulombs and
meters) must be used. (2) Because we want only the magnitudes of
the forces, we do not carry along the signs of the charges. That is,
we use their absolute values. Determine if the forces are attractive
or repulsive and then draw them in your diagram. Pick a direction
to be positive and sum the forces.

From the diagram, the resultant force on the center charge is

FE = FE8 − FE3 = 4.0 N − 3.4 N = 0.6 N

and it is in the +x-direction, to the right.

24.6 [II]  Find the ratio of the Coulomb electric force FE to the gravitational
force FG between two electrons in vacuum.

From Coulomb’s Law and Newton’s Law of gravitation,

The electric force is much stronger than the gravitational force.



24.7 [II]  Illustrated in Fig. 24-2, are two identical balls in vaccuum, each of
mass 0.10 g. They carry identical charges and are suspended by
two threads of equal length. At equilibrium they position
themselves as indicated. Find the charge on either ball.

Consider the ball on the left. It is in equilibrium under three
forces: (1) the tension FT in the thread; (2) the force of gravity,

mg = (1.0 × 10−4 kg)(9.81 m/s2) = 9.8 × 10−4 N

and (3) the Coulomb repulsion FE.

Fig. 24-2



But this is the Coulomb force, kqq′/r2. Therefore,

from which q = 0.10 μC.

24.8 [II]  The charges represented in Fig. 24-3 are held stationary in vaccum.
Find the force on the 4.0 µC charge due to the other two.

Fig. 24-3

From Coulomb’s Law



The resultant force on the 4 µC charge has components

The resultant makes an angle of tan−1(0.45/3.9) = 7° with the
positive y-axis, that is, θ = 97°.

24.9 [II]  Two small charged spheres are placed in vacuum on the x-axis:
+3.0 µC at x = 0 and −5.0 µC at x = 40 cm. Where must a third
charge q be placed if the force it experiences is to be zero?

The situation is represented in Fig. 24-4. We know that q must be
placed somewhere on the x-axis. (Why?) Suppose that q is
positive. When it is placed in interval BC, the two forces on it are
in the same direction and cannot cancel. When it is placed to the
right of C, the attractive force from the −5 µC charge is always
larger than the repulsion of the +3.0 µC charge. Therefore, the
force on q cannot be zero in this region. Only in the region to the
left of B can cancellation occur. (Can you show that this is also
true if q is negative?)

Fig. 24-4

For q placed as shown, when the net force on it is zero, we have
FE3 = FE5 and so, for distances in meters,

After canceling q, k0, and 10−6 C from each side, cross-multiply to
obtain



5d2 = 3.0(0.40 + d)2 or d2 − 1.2d − 0.24 = 0

Using the quadratic formula,

Two values, 1.4 m and −0.18 m, are therefore found for d. The
first is the correct one; the second gives the point in BC where the
two forces have the same magnitude but do not cancel.

24.10 [II]  Compute (a) the electric field E in air at a distance of 30 cm from
a point charge q•1 = 5.0 × 10−9 C, (b) the force on a charge q•2 =
4.0 × 10−10 C placed 30 cm from q•1, and (c) the force on a charge
q•3 = −4.0 × 10−10 C placed 30 cm from q•1 (in the absence of q•2).

directed away from q•1.

(b) FE = Eq•2 = (500 N/C)(−4.0 × 10−10 C) = 2.0 × N = 0.20 μN
directed away from q•1.

(c) FE = Eq•3 = (500 N/C)(−4.0 × 10−10 C) = −0.20 μN
This force is directed toward q•1.

24.11 [III] The situation depicted in Fig. 24-5 is that of two tiny charged
spheres separated by 10.0 cm in air. Find (a) the electric field E at
point P, (b) the force on a −4.0 × 10−8 C charge placed at P, and
(c) where in the region the electric field would be zero (in the
absence of the −4.0 × 10−8 C charge).

Fig. 24-5

(a) A positive test charge placed at P will be repelled to the right
by the positive charge q1 and attracted to the right by the



negative charge q2. Because  have the same direction,
we can add their magnitudes to obtain the magnitude of the
resultant field:

where r1 = r2 = 0.05 m, and |q1| and |q2| are the absolute values
of q1 and q2. Hence,

directed toward the right.

(b) A charge q placed at P will experience a force Eq. Therefore,

FE = Eq = (9.0 × 105 N/C)(−4.0 × 10−8 C) = −0.036 N

The negative sign tells us the force is directed toward the left.
This is correct because the electric field represents the force on
a positive charge. The force on a negative charge is opposite in
direction to the field.

(c) Reasoning as in Problem 24.9, we conclude that the field will
be zero somewhere to the right of the −5.0 × 10−8 C charge.
Represent the distance to that point from the −5.0 × 10−8 C
charge by d. At that point,

E1 − E2 = 0

because the field due to the positive charge is to the right, while
the field due to the negative charge is to the left. Thus,

Simplifying, we obtain

3d2 − 0.2d − 0.01 = 0



The quadratic formula yields d = 0.10 m and −0.03 m. Only the
plus sign has meaning here, and therefore d = 0.10 m. The
point in question is 10 cm to the right of the negative charge.

24.12 [II]  Three charges are placed on three corners of a square, as shown in
Fig. 24-6. Each side of the square is 30.0 cm and the arrangement
is in air. Compute  at the fourth corner. What would be the force
on a 6.00 µC charge placed at the vacant corner?

Fig. 24-6

The contributions of the three charges to the field at the vacant
corner are as indicated. Notice in particular their directions, which
correspond to the directions of the forces that would exist on a
positive test charge if it was at that location. Their magnitudes are
given by E = k0q/r2 to be

E4 = 4.00 × 105 N/C E8 = 4.00 × 105 N/C E5 = 5.00 × 105 N/C

Because the E8 vector makes an angle of 45.0° to the horizontal,

The force on a charge placed at the vacant corner would be simply
FE = Eq. Since q = 6.00 × 10−6 C, we have FE = 1.48 N at an angle
of 118°.



24.13 [III] Two charged metal plates in vacuum are 15 cm apart as drawn in
Fig. 24-7. The electric field between the plates is uniform and has
a strength of E = 3000 N/C. An electron (q = −e, me = 9.1 × 10−31

kg) is released from rest at point P just outside the negative plate.
(a) How long will it take to reach the other plate? (b) How fast
will it be going just before it hits?

Fig. 24-7

The electric field lines show the force on a positive charge. (A
positive charge would be repelled to the right by the positive plate
and attracted to the right by the negative plate.) An electron, being
negative, will experience a force in the opposite direction, toward
the left, of magnitude

FE = |q|E = (1.6 × 10−19 C)(3000 N/C) = 4.8 × 10−16 N

Because of this force, the electron experiences an acceleration
toward the left given by

In the motion problem for the electron released at the negative
plate and traveling to the positive plate,

υi = 0 x = 0.15 m a = 5.3 × 1014 m/s2



(b) υ = υi + at = 0 + (5.3 × 1014 m/s2)(2.4 × 10−8 s) = 1.30 × 107

m/s

As you will see in Chapter 41, relativistic effects begin to
become important at speeds above this. Therefore, this
approach must be modified for very fast particles.

24.14 [I]    Suppose in Fig. 24-7 an electron is shot straight upward from
point-P with a speed of 5.0 × 106 m/s. How far above A will it
strike the positive plate?

This is a projectile problem. (Since the gravitational force is so
small compared to the electrical force, we can ignore gravity.) The
only force acting on the electron after its release is the horizontal
electric force. We found in Problem 24.13(a) that under the action
of this force the electron has a time-of-flight of 2.4 × 10−8 s. The
vertical displacement in this time is

(5.0 × 106 m/s)(2.4 × 10−8 s) = 0.12 m

The electron travels along an arc and strikes the positive plate 12
cm above point-A.

24.15 [II]  In Fig. 24-7 a proton (q• = +e, m = 1.67 × 10−27 kg) is shot with a
speed of 2.00 × 105 m/s toward P from A. What will be its speed
just before hitting the plate at P?

Let’s first calculate the acceleration, knowing the electric field,
and from it the force:

For the problem involving horizontal motion,



υi = 2.00 × 105 m/s x = 0.15 m a = 2.88 × 1011 m/s2

24.16 [II]  Two identical tiny metal balls in air have charges q1 and q2. The
repulsive force one exerts on the other when they are 20 cm apart
is 1.35 × 10−4 N. After the balls are touched together and then
separated once again to 20 cm, the repulsive force is found to be
1.406 × 10−4 N. Find q1 and q2.

Because the force is one of repulsion, q1 and q2 have the same
sign. After the balls are touched, they share charge equally, so
each has a charge (q1 + q2). Writing Coulomb’s Law for the two
situations described, we have

After substitution for k0, these equations reduce to

q1q2 = 6.00 × 10−16 C2 and q1 + q2 = 5.00 × 10−8 C

Solving these equations simultaneously leads to q1 = 20 nC and q2
= 30 nC (or vice versa). Alternatively, both charges could have
been negative.

SUPPLEMENTARY PROBLEMS

24.17 [I]  Imagine two separated tiny interacting uniformly charged spheres.
What happens to the electrostatic force on each of them if the
charge on one is doubled?



24.18 [I]  Imagine two separated tiny interacting uniformly charged spheres.
What happens to the electrostatic force on each of them if the
charge on both is doubled and their separation is also doubled?

24.19 [I]  What is the electrostatic force acting on each of two tiny uniformly
charged spheres in vacuum if they both carry 1.00 C of charge and
they are separated, center to center, by 1.00 m?

24.20 [I]  What should be the separation in vacuum between two tiny spheres
uniformly carrying charges of 10.0 nC and 20.0 nC if the force
they exert on each other is to be 10.0 N?

24.21 [I]  Compute the force on each of two electrons when they are
separated in vacuum by a distance corresponding to the
approximate size of an atom (0.100 nm).

24.22 [I]  Determine the force that would exist between two uranium nuclei
separated in vacuum by the approximate size of an atom (0.100
nm).

24.23 [I]  Two very small charges, each of –100 μC, are separated by 1.00
mm in ethanol at 25 °C. Determine the forces acting on each
charge. [Hint: Use Table 24-1.]

24.24 [I]  How many electrons are contained in 1.0 C of charge? What is the
mass of the electrons in 1.0 C of charge?

24.25 [I]  If two equal point charges, each of 1 C, were separated in air by a
distance of 1 km, what would be the force between them?

24.26 [I]  Determine the force between two free electrons spaced 1.0
angstrom (10−10 m) apart in vacuum.

24.27 [I]  What is the force of repulsion between two argon nuclei that are
separated in vacuum by 1.0 nm (10−9 m)? The charge on an argon
nucleus is +18e.

24.28 [I]  Two equally charged small balls are 3 cm apart in air and repel



each other with a force of 40 µN. Compute the charge on each
ball.

24.29 [II] Three point charges are placed at the following locations on the x-
axis: +2.0 µC at x = 0, −3.0 µC at x = 40 cm, −5.0 µC at x = 120
cm. Find the force (a) on the −3.0 µC charge, (b) on the −5.0 µC
charge.

24.30 [II] Four equal point charges of +3.0 µC are placed in air at the four
corners of a square that is 40 cm on a side. Find the force on any
one of the charges.

24.31 [II] Four equal-magnitude point charges (3.0 µC) are placed in air at
the corners of a square that is 40 cm on a side. Two, diagonally
opposite each other, are positive, and the other two are negative.
Find the force on either negative charge.

24.32 [II] Charges of +2.0, +3.0, and −8.0 µC are placed in air at the vertices
of an equilateral triangle of side 10 cm. Calculate the magnitude of
the force acting on the −8.0 µC charge due to the other two
charges.

24.33 [II] One charge of (+5.0 µC) is placed in air at exactly x = 0, and a
second charge (+7.0 µC) at x = 100 cm. Where can a third be
placed so as to experience zero net force due to the other two?

24.34 [II] Two identical tiny metal balls carry charges of +3 nC and −12 nC.
They are 3 m apart in vacuum. (a) Compute the force of attraction.
(b) The balls are now touched together and then separated to 3 cm.
Describe the forces on them now.

24.35 [II] A charge of +6.0 µC experiences a force of 2.0 mN in the +x-
direction at a certain point in space. (a) What was the electric field
at that point before the charge was placed there? (b) Describe the
force a −2.0 µC charge would experience if it were used instead of
the +6.0 µC charge.

24.36 [I]  A point charge of −3.0 × 10−5 C is placed at the origin of



coordinates in vacuum. Find the electric field at the point x = 5.0
m on the x-axis.

24.37 [I]  Determine the magnitude of the electric field in vacuum at a
distance of 1.00 mm from a proton. [Hint: Use k0.]

24.38 [I]  A small conducting sphere carries a uniform charge of 200 nC. It is
surrounded by water at 20 °C. Determine the magnitude of the
electric field 10.00 cm away. [Hint: Use Table 24-1.]

24.39 [I]  Calculate the magnitude and direction of the electric field at a point
25.0 cm to the left of a tiny sphere carrying a uniform charge of
−500 nC. The entire space is filled with methanol at 20 °C. [Hint:
Use Table 24-1.]

24.40 [I]  Two +400-nC point charges are in vacuum separated by 20.0 cm.
Determine the electric field at a point midway between the
charges.

24.41 [I]  Two point charges, one +400.0 nC and the other −400.0 nC,
located 20.00 cm to the right of the first, are in vacuum. Determine
the electric field (magnitude and direction) at a point midway
between the charges.

24.42 [III] Four equal-magnitude (4.0 μC) charges in vacuum are placed at
the four corners of a square that is 20 cm on each side. Find the
electric field at the center of the square (a) if the charges are all
positive, (b) if the charges alternate in sign around the perimeter of
the square, (c) if the charges have the following sequence around
the square: plus, plus, minus, minus.

24.43 [II] A 0.200-g ball in air hangs from a thread in a uniform vertical
electric field of 3.00 kN/C directed upward. What is the charge on
the ball if the tension in the thread is (a) zero and (b) 4.00 mN?

24.44 [II] Determine the acceleration of a proton (q = +e, m = 1.67 × 10−27

kg) immersed in an electric field of strength 0.50 kN/C in vacuum.
How many times is this acceleration greater than that due to



gravity?

24.45 [II] A small, 0.60-g ball in air carries a charge of magnitude 8.0 µC. It
is suspended by a vertical thread in a downward 300 N/C electric
field. What is the tension in the thread if the charge on the ball is
(a) positive, (b) negative?

24.46 [III] The tiny sphere at the end of the weightless thread illustrated in
Fig. 24-8 has a mass of 0.60 g. It is immersed in air and exposed
to a horizontal electric field of strength 700 N/C. The ball is in
equilibrium in the position shown. What are the magnitude and
sign of the charge on the ball?

Fig. 24-8

24.47 [III] An electron (q = −e, me = 9.1 × 10−31 kg) is projected out along
the +x-axis in vacuum with an initial speed of 3.0 × 106 m/s. It
goes 45 cm and stops due to a uniform electric field in the region.
Find the magnitude and direction of the field.

24.48 [III] A particle of mass m and charge −e while in a region of vacuum is
projected with horizontal speed υ into an electric field (E) directed
downward. Find (a) the horizontal and vertical components of its
acceleration, ax and ay; (b) its horizontal and vertical
displacements, x and y, after time t; (c) the equation of its
trajectory.

ANSWERS TO SUPPLEMENTARY PROBLEMS



24.17 [I]    Both forces double.

24.18 [I]    unchanged

24.19 [I]    9.00 GN

24.20 [I]    0.424 mm

24.21 [I]    23.1 nN

24.22 [I]    195 μN

24.23 [I]    3.62 MN of repulsion

24.24 [I]    6.2 × 1018 electrons, 5.7 × 10−12 kg

24.25 [I]    9 kN repulsion

24.26 [I]    23 nN repulsion

24.27 [I]    75 nN

24.28 [I]    2 nC

24.29 [II]   (a) −0.55 N; (b) 0.15 N

24.30 [II]   0.97 N outward along the diagonal

24.31 [II]   0.46 N inward along the diagonal

24.32 [II]   31 N

24.33 [II]   at x = 46 cm

24.34 [II]   (a) 4 × 10−4 N attraction; (b) 2 × 10−4 N repulsion

24.35 [II]   (a) 0.33 kN/C in +x-direction; (b) 0.67 mN in −x-direction

24.36 [I]    11 kN/C in −x-direction



24.37 [I]    1.44 × 10–3 N/C

24.38 [I]    2.24 × 10–3 N/C

24.39 [I]    2.12 × 10–3 N/C, to the right

24.40 [I]    E = 0

24.41 [I]    1.798 × 105 N/C, to the right

24.42 [III] (a) zero; (b) zero; (c) 5.1 MN/C toward the negative side

24.43 [II]   (a) +653 nC; (b) −680 nC

24.44 [II]   4.8 × 1010 m/s2, 4.9 × 109

24.45 [II]   (a) 8.3 mN; (b) 3.5 mN

24.46 [III] −3.1 µC

24.47 [III] 57 N/C in +x-direction

24.48 [III] 



Electric Potential; Capacitance

The Potential Difference between point-A and point-B is the work done
against electrical forces in carrying a unit positive test-charge from A to B.
We represent the potential difference between A and B by VB−VA or just by
V when there is no ambiguity. Its units are those of work per charge
(joules/coulomb) and are designated as volts (V):

1 V = 1 J/C

Because work is a scalar quantity, so too is potential difference. Like
work, potential difference may be positive or negative. The work W done in
transporting a charge q from one point-A to a second point-B is

where the appropriate sign (+ or −) must be given to the charge. If both (VB
− VA) and q are positive (or negative), the work done is positive. If (VB −
VA) and q have opposite signs, the work done is negative.

Absolute Potential: The absolute potential at a point is the work done
against electric forces in carrying a unit positive test-charge from infinity to
that point. Hence, the absolute potential at point-B is the difference in
potential from A at ∞ to B.

Consider a point charge q• in vacuum, and a point-P at a distance r from
that point charge. The absolute potential at P due to the charge q• is



where k0 = 8.99 × 109 N · m2/C2 is the Coulomb constant for vacuum. The
absolute potential at infinity (at r = ∞) is zero. As in Chapter 24, k0 = 1/4πε0,
and when a material medium surrounds the charge, k0 must be replaced by k
= 1/4πε. See Table 24-1 for values of the permittivity in a sampling of
materials.

Because of the superposition principle and the scalar nature of potential
difference, the absolute potential at a point due to a number of point charges
is

where the ri are the distances of the charges q•i from the point in question.
Negative q•’s contribute negative terms to the potential, while positive q•’s
contribute positive terms.

The absolute potential due to a uniformly charged sphere, at points
outside the sphere or on its surface, is V = k0q/r, where q is the charge on the
sphere. This potential is the same as that due to a point charge q• placed at
the position of the sphere’s center.

Electrical Potential Energy (PEE): To carry a charge q from infinity to a
point where the absolute potential is V, work in the amount qV must be done
on the charge. This work appears as electrical potential energy (PEE).

Similarly, when a charge q is carried through a potential difference V,
work in the amount qV must be done on the charge. This work results in a
change qV in the PEE of the charge. For a potential rise, V will be positive
and the PEE will increase if q is positive. But for a potential drop, V will be
negative and the PEE of the charge will decrease if q is positive.

V Related to E: Suppose that in a certain region the electric field is uniform
and is in the x-direction. Call its magnitude Ex. Because Ex is the force on a
unit positive test-charge, the work done in moving the test-charge through a
distance x is (from W = Fxx)

The field between two large, parallel, oppositely charged, closely spaced



metal plates is uniform. We can therefore use this equation to relate the
electric field E between the plates to the plate separation d and their
potential difference V. For parallel plates,

Electron Volt Energy Unit: The work done in carrying a charge +e
(coulombs) through a potential rise of exactly 1 volt is defined to be 1
electron volt (eV). Therefore,

Equivalently,

A Capacitor is a device that stores charge. The human body is a capacitor,
albeit a poor one. Often, although certainly not always, a capacitor consists
of two conductors separated by an insulator or dielectric (and that includes
vacuum). The capacitance (C) of any capacitor is defined as

For q in coulombs and V in volts, C is in farads (F). The farad is a very
large capacitance; one usually works with microfarads (1.00 μF = 1.00 ×
10−6 F) or nanofarads (1.00 nF = 1.00 × 10−9 F).

Parallel-Plate Capacitor: The capacitance of a parallel-plate capacitor
whose opposing plate faces, each of area A, are separated by a small
distance d is given by

where K ε/ε0 is the dimensionless dielectric constant (see Chapter 24) of the
nonconducting material (the dielectric) between the plates, and

For vacuum, K = 1, so that a dielectric-filled parallel-plate capacitor has a
capacitance K times larger than the same capacitor with vacuum between its



plates. This result holds for a capacitor of arbitrary shape.

Equivalent Capacitance: Complicated circuits containing many capacitors
can often be simplified by combining them in ways we shall discuss
presently. For the especially simple circuits we will deal with, we can
usually combine all the capacitors into one equivalent capacitor (Ceq).
Such a capacitor has all the characteristics of the entire collection of
capacitors; it stores the same charge and energy.

Capacitors in Parallel and Series: As shown in Fig. 25-1, capacitances
add for capacitors in parallel, whereas reciprocal capacitances add for
capacitors in series. When you are dealing with capacitors in series, it’s
convenient

Fig. 25-1

to use the 1/x key on your calculator. It is also helpful when you have two or
more capacitors in series to keep in mind that for any two, C1 and C2,

and so you can add them all two at a time.
Circuit elements (capacitors, resistors, batteries, etc.) have two leads or

terminals. When three or more terminals are attached, the point (or region)
where they attach is called a node. In Fig. 25-1(a) there are two nodes (the
entire top and the entire bottom); in (b) there are none. In Fig. 25-1(a), when
both terminals of one circuit element are connected to both terminals of
another element, they are in parallel. When determining if two elements are
in parallel, it does not matter how many terminals meet at each node. An
unlimited number of elements can be arranged in parallel. The same voltage



V then appears across each of them.
In Fig. 25-1(b), when one and only one terminal of one circuit element is

connected to one and only one terminal of another element, they are in
series. If a node exists between capacitors, they are not in series. Be careful
here, because as we simplify a circuit, nodes can disappear leaving elements
in series. An unlimited number of elements can be arranged in series.
Capacitors in series carry the same charge no matter the value of their
capacitance.

A circuit will have at least two terminals leading to it, across which we
will inevitably place a voltage source; that’s the V in Fig. 25-1. Now
examine Fig. 25-2 and notice that there are several terminals leading to the
circuit: A, B, C, and D. The circuit can be approached using any pair of
these terminals, but the equivalent capacitance will generally be different for
each pair.

Fig. 25-2

If we want the equivalent capacitance across B-C, we see that C6 is just
hanging out. With no voltage across it, it does not affect the rest of the
circuit and can be removed from the analysis. Similarly, terminal D can be
removed. There is then no node between C3 and C4; they are in series.
Notice that there is a wire across C1; hence there is no voltage across it, and
it too can be removed (you must leave the wire in place). We say that C1 is
shorted out.



With C6 and C1 removed in Fig. 25-2, the node where C6, C1, and C2 met
will vanish. Across B-C, that leaves C2, C3, and C4 in series, and that
resultant capacitance is in parallel with C5. Notice that when we look across
B-C, the two wires representing B and C attach to the rest of the circuit at
nodes. Hence there are nodes on both sides of C5, and so C5 is not in series
with anything else.

Energy Stored in a Capacitor: The energy (PEE) stored in a capacitor of
capacitance C that has a charge q and a potential difference V is

PROBLEM SOLVING GUIDE

Your calculator has a 1-over key designated as x−1 or 1/x. It’s very
convenient when working with capacitors in series [Fig. 25-1(b)]. A
common error is to compute 1/C for a string of series capacitors, and then to
forget to take 1-over that to get C. When analyzing a circuit across a pair of
terminals like B-C in Fig. 25-2, it’s helpful to imagine a battery across those
terminal. Draw the circuit labeling the nodes 1, 2, 3, etc. Find capacitors that
are obviously in series and/or parallel and combine them. Every time you
simplify it, redraw the circuit once again. Often you will have to work
backward from the equivalent circuit to the original, so several drawings are
a must. Remember that the charge on the equivalent capacitor representing
a string of series elements is the same on each of those series capacitors.

SOLVED PROBLEMS

25.1 [I]    In Fig. 25-3, the potential difference between the metal plates in air
is 40 V. (a) Which plate is at the higher potential? (b) How much
work must be done to carry a +3.0 C charge from B to A? From A
to B? (c) How do we know that the electric field is in the direction
indicated? (d) If the plate separation is 5.0 mm, what is the
magnitude of ?



Fig. 25-3

(a) A positive test charge between the plates is repelled by A and
attracted by B. Left to itself, the positive test charge will move
from A to B, and so A is at the higher potential.

(b) The magnitude of the work done in carrying a charge q
through a potential difference V is qV. Thus the magnitude of
the work done in the present situation is

W = (3.0 C)(40 V) = 0.12 kJ

Because a positive charge between the plates is repelled by A,
positive work (+120 J) must be done to drag the +3.0 C charge
from B to A. To restrain the charge as it moves from A to B,
negative work (−120 J) is done.

(c) A positive test-charge between the plates experiences a force
directed from A to B and this is, by definition, the direction of
the field.

(d) For closely spaced parallel plates, V = Ed. Therefore,

Notice that the SI units for electric field, V/m and N/C, are
identical.

25.2 [I]    How much work is required to carry an electron from the positive
terminal of a 12-V battery to the negative terminal?



Going from the positive to the negative terminal, one passes
through a potential drop. In this case it is V = −12 V. Then

W = qV = (−1.6 × 10−19 C)(−12 V) = 1.9 × 10−18 J

As a check, notice that an electron, if left to itself, will move from
negative to positive because it is a negative charge. Hence,
positive work must be done to carry it in the reverse direction as
required here.

25.3 [I]    How much electrical potential energy does a proton lose as it falls
through a potential drop of 5 kV?

The proton carries a positive charge. It will therefore move from
regions of high potential to regions of low potential if left free to
do so. Its change in potential energy as it moves through a
potential difference V is Vq. In our case, V = −5 kV. Therefore,

Change in PEE = Vq = (−5 × 103 V)(1.6 × 10−19 C) = −8 × 10−16 J

25.4 [II]  An electron starts from rest and falls through a potential rise of 80
V. What is its final speed?

Positive charges fall through potential drops; negative charges,
such as electrons, fall through potential rises.

Change in PEE = Vq = (80 V)(−1.6 × 10−19 C) = −1.28 × 10−17 J

This lost PEE appears as KE of the electron:

25.5 [I]    (a) What is the absolute potential at each of the following distances
from a charge of +2.0 μC in air: r = 10 cm and r = 50 cm? (b)
How much work is required to carry a 0.05-μC charge from the



point at r = 50 cm to that at r = 10 cm?

25.6 [II]  Suppose [in Problem 25.5(a) where there is a +2.0 µC charge] that
a proton is released at r = 10 cm. How fast will it be moving as it
passes a point at r = 50 cm?

This is a situation where PEE goes into KE. As the proton moves
from one point to the other, there is a potential drop of

Potential drop = 1.80 × 105 V − 0.36 × 105 V = 1.44 × 105 V

The proton acquires KE as it falls through this potential drop:

from which υf = 5.3 × 106 m/s.

25.7 [II]  In Fig. 25-3, which depicts two closely spaced charged parallel
plates in vacuum, let E = 2.0 kV/m and d = 5.0 mm. A proton is
shot from plate-B toward plate-A with an initial speed of 100 km/s.
What will be its speed just before it strikes plate-A?

The proton, being positive, is repelled by plate-A and will
therefore be slowed down. We need the potential difference
between the plates, which is

V = Ed = (2.0 kV/m)(0.0050 m) = 10 V

Now, from the conservation of energy, for the proton,



Substituting m = 1.67 × 10−27 kg, υB = 1.00 × 105 m/s, q = 1.60 ×
10−19 C, and V = 10 V results in υA = 90 km/s. The proton is
indeed slowed.

25.8 [III]   The nucleus of a tin atom in vacuum has a charge of +50e. (a)
Find the absolute potential V at a radial distance of 1.0 × 10−12 m
from the nucleus. (b) If a proton is released from this point, how
fast will it be moving when it is 1.0 m from the nucleus?

(b) The proton is repelled by the nucleus and flies out to infinity.
The absolute potential at a point is the potential difference
between the point in question and infinity. Hence, there is a
potential drop of 72 kV as the proton flies to infinity.
Usually we would simply assume that 1.0 m is far enough from
the nucleus to consider it to be at infinity. But, as a check,
compute V at r = 1.0 m:

which is essentially zero in comparison with 72 kV.

As the proton falls through 72 kV,

from which υf = 3.7 × 106 m/s.

25.9 [II]  The following point charges are placed on the x-axis in air: +2.0 µC
at x = 20 cm, −3.0 µC at x = 30 cm, −4.0 µC at x = 40 cm. Find the
absolute potential on the axis at x = 0.

Potential is a scalar, and so



25.10 [I]    Two point charges, +q and −q, are separated by a distance d in air.
Where, besides at infinity, is the absolute potential zero?

At the point (or points) in question,

This condition holds everywhere on a plane, which is the
perpendicular bisector of the line joining the two charges.
Therefore, the absolute potential is zero everywhere on that plane.

25.11 [II]  Four point charges in air are placed at the four corners of a square
that is 30 cm on each side. Find the potential at the center of the
square if (a) the four charges are each +2.0 µC and (b) two of the
four charges are +2.0 µC and two are −2.0 µC.

25.12 [III] In Fig. 25-4, the medium is vacuum. Charge at A is +200 pC,
while the charge at B is −100 pC. (a) Find the absolute potentials
at points-C and -D. (b) How much work must be done to transfer a
charge of +500 µC from point-C to point-D?

Fig. 25-4

(b) There is a potential rise from C to D of V = VD − VC = 7.88 V
− (−2.25 V) = 10.13 V. So

W = Vq = (10.13 V)(5.00 × 10−4 C) = 5.1 mJ

25.13 [III] Find the electrical potential energy of three point charges placed



in vacuum as follows on the x-axis: +2.0 µC at x = 0, +3.0 µC at x
= 20 cm, and +6.0 µC at x = 50 cm. Take the PEE to be zero when
the charges are separated far apart.

Compute how much work must be done to bring the charges from
infinity to their places on the axis. Bring in the 2.0 µC charge first;
this requires no work because there are no other charges in the
vicinity.

Next bring in the 3.0 µC charge, which is repelled by the +2.0 µC
charge. The potential difference between infinity and the position
to which we bring it is due to the +2.0 µC charge and is

Therefore the work required to bring in the 3 µC charge is

W3µC = qVx = 0.2 = (3.0 × 10−6 C)(9.0 × 104 V) = 0.270 J

Finally bring the 6.0 µC charge in to x = 0 50 m. The potential
there due to the two charges already present is

Therefore the work required to bring in the 6.0 µC charge is

W6µC = qVx = 0.5 = (6.0 × 10−6 C)(12.6 × 104 V) = 0.756 J

Adding the amounts of work required to assemble the charges
gives the energy stored in the system:

PEE = 0.270 J + 0.756 J = 1.0 J

Can you show that the order in which the charges are brought in
from infinity does not affect this result?



25.14 [III] Two protons are held at rest in vacuum, 5.0 × 10−12 m apart.
When released, they fly apart. How fast will each be moving when
they are far from each other?

Their original PEE will be changed to KE. Proceed as in Problem
25.13. The potential at 5.0 × 10−12 m from the first charge due to
that charge alone is

The work needed to bring in the second proton is then

W = qV = (1.60 × 10−19 C)(288 V) = 4.61 × 10−17 J

and this is the PEE of the original system. From the conservation
of energy,

Since the particles are identical, υ1 = υ2 = υ. Solving, we find that
υ = 1.7 × 105 m/s when the particles are far apart.

25.15 [III] Figure 25-5 depicts two large, closely spaced metal plates
(perpendicular to the page) connected to a 120-V battery. Assume
the plates to be in vacuum and to be much larger than shown. Find
(a) E between the plates, (b) the force experienced by an electron
between the plates, (c) the PEE lost by an electron as it moves
from plate-B to plate-A, and (d) the speed of the electron released
from plate-B just before striking plate-A.



Fig. 25-5

(a) E is directed from the positive plate-A to the negative plate-B.
It is uniform between large parallel plates and is given by

directed from left to right.

(b) FE = qE = (−1.6 × 10−19 C)(6000 V/m) = −9.6 × 10−16 N
The minus sign tells us that  is directed oppositely to .
Since plate-A is positive, the electron is attracted by it. The
force on the electron is toward the left.

(c) Change in PEE = Vq = (120 V)(−1.6 × 10−19 C) = −1.92 ×
10−17 J =1.9 × 10−17 J
Notice that V is a potential rise from B to A.

(d) PEE lost = KE gained

25.16 [II]  As shown in Fig. 25-6, a charged particle in vacuum remains



stationary between the two large horizontal charged plates. The
plate separation is 2.0 cm, and m = 4.0 × 10−13 kg and q = 2.4 ×
10−18 C for the particle. Find the potential difference between the
plates.

Fig. 25-6

Since the particle is in equilibrium, the weight of the particle is
equal to the upward electrical force. That is,

But for a parallel-plate system,

V = Ed = (1.63 × 106 V/m)(0.020 m) = 33 kV

25.17 [II]  An alpha particle (q = 2e, m = 6.7 × 10−27 kg) falls in vacuum
from rest through a potential drop of 3.0 × 106 V (i.e., 3.0 MV).
(a) What is its KE in electron volts? (b) What is its speed?

25.18 [II]  What is the speed of a 400 eV (a) electron, (b) proton, and (c)
alpha particle?

In each case we know that the particle’s kinetic energy is



Substituting me = 9.1 × 10−31 kg for the electron, mp = 1.67 ×
10−27 kg for the proton, and mα = 4(1.67 × 10−27 kg) for the alpha
particle gives their speeds as (a) 1.186 × 107 m/s, (b) 2.77 × 105

m/s, and (c) 1.38 × 105 m/s.

25.19 [I]    A parallel-plate capacitor has a capacitance of 8.0 µF with air
between its plates. Determine its capacitance when a dielectric
with dielectric constant 6.0 is placed between its plates.

C with dielectric = K(C with air) = (6.0)(8.0 µF) = 48 µF

25.20 [I]    What is the charge on a 300-pF capacitor when it is charged to a
voltage of 1.0 kV?

q = CV = (300 × 10−12 F)(1000 V) = 3.0 × 10−7 C = 0.30 µC

25.21 [I]    A metal sphere mounted on an insulating rod carries a charge of
6.0 nC when its potential is 200 V higher than its surroundings.
What is the capacitance of the capacitor formed by the sphere and
its surroundings?

25.22 [I]    A 1.2-µF capacitor is charged to 3.0 kV. Compute the energy
stored in the capacitor.

25.23 [II]  The series combination of two capacitors shown in Fig. 25-7 is
connected across 1000 V. Compute (a) the equivalent capacitance
Ceq of the combination, (b) the magnitudes of the charges on the
capacitors, (c) the potential differences across the capacitors, and
(d) the energy stored in the capacitors.



Fig. 25-7

from which C = 2.0 pF.

(b) In a series combination, each capacitor carries the same
charge [see Fig. 25-1(b)], which is the charge on the
combination. Thus, using the result of (a), we have

25.24 [II]  The parallel capacitor combination shown in Fig. 25-8 is
connected across a 120-V source. Determine the equivalent
capacitance Ceq, the charge on each capacitor, and the charge on
the combination.

For a parallel combination,

Ceq = C1 + C2 = 2.0 pF + 6.0 pF = 8.0 pF



Fig. 25-8

Each capacitor has a 120-V potential difference impressed on it.
Therefore,

q1 = C1V1 = (2.0 × 10−12 F)(120 V) = 0.24 nC

q2 = C2V2 = (6.0 × 10−12 F)(120 V) = 0.72 nC

The charge on the combination is q1 + q2 = 960 pC. Or, we could
write

q = CeqV = (8.0 × 10−12 F)(120 V) = 0.96 nC

25.25 [II]  Examine the circuit drawn in Fig. 25-9(a). Determine the
equivalent capacitance (a) between terminals A and B (b) between
terminals B and C.

Fig. 25-9



(a) We can go directly from A to B by only one path, and it’s
through C1. The rest of the circuit is shorted out and does not
contribute to the equivalent capacitance. Hence, the capacitance
measured across A-B is just 3.0 µF. In other words, a voltage
source placed A-B would only charge C1.

(b) By contrast, we can go from B to C along two paths, and if a
voltage were put across B-C, all the capacitors in those two
paths (C1, C2, C3, and C4) would become charged. As for C5
it’s not in either path from B to C and can be ignored. Now
redraw the circuit as in Fig. 25-9(b). Capacitors C2 and C3 are
in parallel, and their equivalent, call it C6, is given by C6 = C2 +
C3 = 1.0 µF + 1.0 µF = 2.0 µF. Capacitors C1, C6, and C4 are
then in series between terminals B and C. Hence,

and

Using the 1/x key on your calculator

Alternatively, combining series capacitors two at a time and
calling C7 the equivalent of C6 and C4,

Thus for the whole circuit,

and that’s the same result we got above.



25.26 [III] For the circuit pictured in Fig. 25-10(a) find the equivalent
capacitance between terminals A and B.

Start the analysis someplace where you see two capacitors in
parallel. C1 and C2 are in parallel. Call the equivalent C7 = C1 +
C2 = 6.0 pF. Redraw the circuit. C5 and C6 are in parallel; call the
equivalent C8 = C5 + C6 = 2.0 pF + 2.0 pF = 4.0 pF. Redraw the
circuit as in Fig. 25-10(b). Now C7 and C3 are in series and their
equivalent, C9, is given by

Fig. 25-10

or C9 = 2.0 pF. That leaves C9 and C4 in parallel as C10 = C9 + C4
= 2.0 pF + 2.0 pF = 4.0 pF. Finally, C10 and C8 are in series.
Therefore,

and Ceq = 2.0 pF.

25.27 [III] A laboratory capacitor consists of two parallel conducting plates,
each with area 200 cm2, separated by a 0.40-cm air gap. (a)
Compute its capacitance. (b) If the capacitor is connected across a
500-V source, find the charge on it, the energy stored in it, and the



value of E between the plates. (c) If a liquid with K = 2.60 is
poured between the plates so as to fill the air gap, how much
additional charge will flow onto the capacitor from the 500-V
source?
(a) For a parallel-plate capacitor with air gap,

(b) q = CV = (4.4 × 10−11 F)(500 V) = 2.2 × 10−8 C = 22 2C

(c) The capacitor will now have a capacitance K = 2.60 times
larger than before. Therefore,

q = CV = (2.60 × 4.4 × 10−11 F)(500 V) = 5.7 × 10−8 C = 57 nC

The capacitor already had a charge of 22 nC, and so 57 nC − 22
nC or 35 nC must have been added to it.

25.28 [II]  Two capacitors, 3.0 µF and 4.0 µF, are individually charged
across a 6.0-V battery. After being disconnected from the battery,
they are connected together with a negative plate of one attached
to the positive plate of the other. What is the final charge on each
capacitor?

Let 3.0 µF = C1 and 4.0 µF = C2. The situation is shown in Fig.
25-11. Before being connected, their charges are

q1 = C1V = (3.0 × 10−6 F)(6.0 V) = 18 µC

q2 = C2V = (4.0 × 10−6 F)(6.0 V) = 24 µC



Fig. 25-11

These charges partly cancel when the capacitors are connected
together. Their final charges are , where

Also, the potentials across them are now the same, so that V = q/C
gives

Substitution in the previous equation gives

SUPPLEMENTARY PROBLEMS

25.29 [I]  What happens to the electric potential at a point in space due to a
point charge if that charge is doubled?

25.30 [I]  What happens to the electric potential at a point in space due to a
point charge if that charge is doubled and the distance is doubled?

25.31 [I]  What happens to the electric potential at a point in space due to a
point charge if the charge is subsequently surrounded by some
kind of oil?



25.32 [I]  Determine the electric potential 1.00 cm from an electron in
vacuum. [Hint: e = −1.602 2 × 10−19 C.]

25.33 [I]  Imagine a +40.0-nC point charge in vacuum. What is the value of
the electric potential 112 cm away?

25.34 [I]  A small metal sphere carrying a charge of 50.0 µC is immersed in a
bath of ethanol at 25 °C. Determine the electric potential 100.0 cm
away. What would the potential be if the sphere were instead in
vacuum? [Hint: Consult Table 24-1.]

25.35 [I]  Imagine a charge in an evacuated chamber. What is the ratio of the
potential at some distant point in the chamber, before and after the
chamber is filled with cool water at 20 °C?

25.36 [I]  Two metal plates are attached to the two terminals of a 1.50-V
battery. How much work is required to carry a + 5.0-µC charge
across the gap (a) from the negative to the positive plate, (b) from
the positive to the negative plate?

25.37 [II] The plates described in Problem 25.36 are in vacuum. An electron
(q = −e, me = 9.1 × 10−31 kg) is released at the negative plate and
falls freely to the positive plate. How fast is it going just before it
strikes the plate?

25.38 [II] A proton (q = e, mp = 1.67 × 10−27 kg) is accelerated from rest
through a potential difference of 1.0 MV. What is its final speed?

25.39 [II] An electron gun shoots electrons (q = −e, me = 9.1 × 10−31 kg) at a
metal plate that is 4.0 mm away in vacuum. The plate is 5.0 V
lower in potential than the gun. How fast must the electrons be
moving as they leave the gun if they are to reach the plate?

25.40 [I]  The potential difference between two large parallel metal plates is
120 V. The plate separation is 3.0 mm. Find the electric field
between the plates.



25.41 [II] An electron (q = −e, me = 9.1 × 10−31 kg) is shot with speed 5.0 ×
106 m/s parallel to a uniform electric field of strength 3.0 kV/m.
How far will the electron go before it stops?

25.42 [II] A potential difference of 24 kV maintains a downward-directed
electric field between two horizontal parallel plates separated by
1.8 cm in vacuum. Find the charge on an oil droplet of mass 2.2 ×
10−13 kg that remains stationary in the field between the plates.

25.43 [II] Compute the magnitude of the electric field and the absolute
potential at a distance of 1.0 nm from a helium nucleus of charge
+2e. What is the potential energy (relative to infinity) of a proton
at this position?

25.44 [II] A charge of 0.20 µC is 30 cm from a point charge of 3.0 µC in
vacuum. What work is required to bring the 0.20-µC charge 18 cm
closer to the 3.0-µC charge?

25.45 [II] A point charge of +2.0 µC is placed at the origin of coordinates. A
second, of −3.0 µC, is placed on the x-axis at x = 100 cm. At what
point (or points) on the x-axis will the absolute potential be zero?

25.46 [II] In Problem 25.45, what is the difference in potential between the
following two points on the x-axis: point-A at x = 0.1 m and point-
B at x = 0.9 m? Which point is at the higher potential?

25.47 [II] An electron is moving in the +x-direction with a speed of 5.0 × 106

m/s. There is an electric field of 3.0 kV/m in the +x-direction.
What will be the electron’s speed after it has moved 1.00 cm along
the field?

25.48 [II] An electron has a speed of 6.0 × 105 m/s as it passes point-A on its
way to point-B. Its speed at B is 12 × 105 m/s. What is the
potential difference between A and B, and which is at the higher
potential?

25.49 [I]  A capacitor with air between its plates has capacitance 3.0 µF.



What is its capacitance when wax of dielectric constant 2.8 is
placed between the plates?

25.50 [I]  Determine the charge on each plate of a 0.050-µF parallel-plate
capacitor when the potential difference between the plates is 200
V.

25.51 [I]  A capacitor is charged with 9.6 nC and has a 120 V potential
difference between its terminals. Compute its capacitance and the
energy stored in it.

25.52 [I]  Compute the energy stored in a 60-pF capacitor (a) when it is
charged to a potential difference of 2.0 kV and (b) when the
charge on each plate is 30 nC.

25.53 [II] Three capacitors, each of capacitance 120 pF, are each charged to
0.50 kV and then connected in series. Determine (a) the potential
difference between the end plates, (b) the charge on each
capacitor, and (c) the energy stored in the system.

25.54 [I]  Three capacitors (2.00 µF, 5.00 µF, and 7.00 µF) are connected in
series. What is their equivalent capacitance?

25.55 [I]  Three capacitors (2.00 µF, 5.00 µF, and 7.00 µF) are connected in
parallel. What is their equivalent capacitance?

25.56 [I]  The capacitor combination in Problem 25.54 is connected in series
with the combination in Problem 25.49. What is the capacitance of
this new combination?

25.57 [II] Two capacitors (0.30 and 0.50 µF) are connected in parallel. (a)
What is their equivalent capacitance? A charge of 200 µC is now
placed on the parallel combination. (b) What is the potential
difference across it? (c) What are the charges on the capacitors?

25.58 [II] A 2.0-µF capacitor is charged to 50 V and then connected in
parallel (positive plate to positive plate) with a 4.0-µF capacitor
charged to 100 V. (a) What are the final charges on the capacitors?



(b) What is the potential difference across each?

25.59 [II] Repeat Problem 25.58 if the positive plate of one capacitor is
connected to the negative plate of the other.

25.60 [II] (a) Calculate the capacitance of a capacitor consisting of two
parallel plates separated by a layer of paraffin wax 0.50 cm thick,
the area of each plate being 80 cm2. The dielectric constant for the
wax is 2.0. (b) If the capacitor is connected to a 100-V source,
calculate the charge on the capacitor and the energy stored in the
capacitor.

25.61 [II] Referring to Fig. 25-2, if the capacitance of each capacitor is 20.0
nF, what is the equivalent capacitance between terminals B and C?
Are any capacitors removable? [Hint: Redraw the circuit and
watch for shorts.]

25.62 [II] Referring to Fig. 25-2, if the capacitance of each capacitor is 20.0
nF, what is the equivalent capacitance between terminals B and A?
Are any capacitors removable? [Hint: Redraw the circuit and
watch for shorts.]

25.63 [II] Referring to Fig. 25-2, if the capacitance of each capacitor is 20.0
nF, what is the equivalent capacitance between terminals C and D?
Are any capacitors removable? Which capacitors are in series?
Which are in parallel? [Hint: Redraw the circuit and watch for
shorts.]

25.64 [II] Referring to Fig. 25-10, what is the equivalent capacitance
between terminals C and B? Are any capacitors removable?
Which capacitors are in series? Which are in parallel? [Hint: Find
capacitors that are obviously in series and/or parallel and combine
them. Redraw the circuit.]

25.65 [II] Referring to Fig. 25-12, what is the equivalent capacitance
between terminals A and B? Are any capacitors removable?
Which capacitors are in series? Which are in parallel? [Hint:
Redraw the circuit and watch for shorts.]



Fig. 25-12

25.66 [II] Referring to Fig. 25-13, what is the equivalent capacitance of the
circuit across the 6.0-V battery? What are the voltages across C3,
C8, C9, C5, and C2? How much energy is stored in the 2.0-µF
capacitor? [Hint: Redraw the circuit and watch for shorts.
Remember that the charge on the equivalent capacitor
representing a string of series elements is the same on each of
those series capacitors.]



Fig. 25-13

ANSWERS TO SUPPLEMENTARY PROBLEMS

25.29 [I]    It doubles.

25.30 [I]    It is unchanged.

25.31 [I]    It decreases.

25.32 [I]    −1.44 × 10−7 V; don’t lose the minus sign.

25.33 [I]    321 V

25.34 [I]    18 kV; 450 kV

25.35 [I]    Vvacuum/Vwater = 80

25.36 [I]    (a) 7.5 µJ; (b) −7.5 µJ



25.37 [II]   7.3 × 105 m/s

25.38 [II]   1.4 × 107 m/s

25.39 [II]   1.3 × 106 m/s

25.40 [I]    40 kV/m toward negative plate

25.41 [II]   2.4 cm

25.42 [II]   1.6 × 10−18 C = 10e

25.43 [II]   2.9 × 109 N/C, 2.9 V, 4.6 × 10−19 J

25.44 [II]   0.027 J

25.45 [II]   x = 40 cm and x = −0.20 m

25.46 [II]   4 × 105 V, point-A

25.47 [II]   3.8 × 106 m/s

25.48 [II]   3.1 V, B

25.49 [I]    8.4 µF

25.50 [I]    10 µC

25.51 [I]    80 pF, 0.58 µJ

25.52 [I]    (a) 12 mJ; (b) 7.5 µJ

25.53 [II]   (a) 1.5 kV; (b) 60 nC; (c) 45 µJ

25.54 [I]    1.19 µF

25.55 [I]    14.00 µF

25.56 [I]    1.09 µF



25.57 [II]   (a) 0.80 µF; (b) 0.25 kV; (c) 75 µC, 0.13 mC

25.58 [II]   (a) 0.17 mC, 0.33 mC; (b) 83 V

25.59 [II]   (a) 0.10 mC, 0.20 mC; (b) 50 V

25.60 [II]   (a) 28 pF; (b) 2.8 nC, 0.14 µJ

25.61 [II]   C1 is shorted; C6 is out; Ceq = 26.7 nF

25.62 [II]   Every capacitor except C6 is shorted; Ceq = 20.0 nF

25.63 [II]   C1 is shorted; C6 is out;C1, C2, and C3 are in series yielding 6.66
nF; that result is in parallel with C4; Ceq = 26.7 nF

25.64 [II]   C5 and C6 yield 4.0 pF; C7 is in series with this 4.0 pF; all the
rest of the capacitors attach in a loop at a single node, so there is
no voltage drop across them and they can be chucked; Ceq = 1.7
pF

25.65 [II]   C1 is out; C7 and C3 are shorted; C4 and C5 are in parallel
yielding 6.0 CµF; C6 and C9 are in parallel yielding 4.0 µF; Ceq =
9.0 µF

25.66 [II]   Ceq = 2.0 µF; 3.0 V, 0 V, 0 V, 2.0 V, 1.0 V; 4.0 µJ



Current, Resistance, and Ohm’s Law

A Current (I) of electricity exists in a region when a net electric charge is
transported from one point to another in that region. Suppose the charge is
moving through a wire. If a charge q is transported through a given cross
section of the wire in a time t, then the current through the wire is

Here, q is in coulombs, t is in seconds, and I is in amperes (1 A = 1 C/s). By
custom the direction of the current is taken to be in the direction of flow of
positive charge. Thus, a flow of electrons to the right corresponds to a
current to the left. You will also see this equation written as

A Battery is a source of electrical energy. If no internal energy losses occur
in the battery, then the potential difference (see Chapter 25) between its
terminals is called the electromotive force (emf) of the battery. Unless
otherwise stated, it will be assumed that the terminal potential difference of
a battery is equal to its emf. The unit for emf is the same as the unit for
potential difference, the volt.

The Resistance (R) of a wire or other object is a measure of the potential
difference (V) that must be impressed across the object to cause a current of
one ampere to flow through it:



The unit of resistance is the ohm, for which the symbol Ω (Greek omega) is
used: 1 Ω = 1 V/A.

Ohm’s Law originally contained two parts. Its first part was simply the
defining equation for resistance, V = IR. We often refer to this equation as
being Ohm’s Law. However, Ohm also stated that R is a constant
independent of V and I. This latter part of the law is only approximately
correct.

The relation V = IR can be applied to any resistor, where V is the
potential difference (p.d.) between the two ends of the resistor, I is the
current through the resistor, and R is the resistance of the resistor under
those conditions. It is common usage to refer to V as the voltage across the
resistor.

Measurement of Resistance by Ammeter and Voltmeter: Imagine a
series circuit consisting of the resistance to be measured, an ammeter, and a
battery. The current is measured by the (low-resistance) ammeter. The
potential difference is measured by connecting the terminals of a (high-
resistance) voltmeter across the resistance—that is, in parallel with it. The
resistance is computed by dividing the voltmeter reading by the ammeter
reading according to Ohm’s Law, R = V/I. (If the exact value of the
resistance is required, the resistances of the voltmeter and ammeter must be
considered parts of the circuit.)

The Terminal Potential Difference (or voltage) of a battery or generator
when it delivers a current I is related to its electromotive force ɛ and its
internal resistance r as follows:

(1) When delivering current (on discharge):

(2) When receiving current (on charge):

(3) When no current exists:



Resistivity: The resistance R of a wire of length L and cross-sectional area
A is

where ρ is a constant called the resistivity. The resistivity is a characteristic
of the material from which the wire is made. For L in m, A in m2, and R in
Ω, the units of ρ are Ω · m.

Resistance Varies with Temperature: If a wire has a resistance R0 at a
temperature T0, then its resistance R at a temperature T is

where α is the temperature coefficient of resistance of the material of the
wire. Usually α varies with temperature, and so this relation is applicable
only over a small temperature range. The units of α are K−1 or °C−1.

A similar relation applies to the variation of resistivity with temperature.
If ρ0 and ρ are the resistivities at T0 and T, respectively, then

Potential Changes: The potential difference across a resistor R through
which a current I flows is, by Ohm’s Law, IR. The end of the resistor at
which the current enters is the high-potential end of the resistor. Current
always flows “downhill,” from high to low potential, through a resistor.

The positive terminal of a battery is always the high-potential terminal if
internal resistance of the battery is negligible or small. This is true
irrespective of the direction of the current through the battery.

PROBLEM SOLVING GUIDE

Examine Fig. 26-1, which shows a simple closed resistive circuit. Begin any
analysis by labeling the voltages of all the batteries: label + on the long side
and − on the short side. Current goes out the higher-voltage terminal, the +
side. Here one battery voltage dominates (12.0 V > 9.00 V), so current flows
out of the + side of the 12.0-V battery. Now label all the resistors: label +



where current enters and − where it leaves. Start anywhere in the circuit and
go around—the sum of the voltage drops must equal the sum of the rises.

SOLVED PROBLEMS

26.1 [I]    A steady current of 0.50 A flows through a wire. How much charge
passes through the wire in one minute?

Because I = q/t, it follows that q = It = (0.50 A)(60 s) = 30 C.
(Recall that 1 A = 1 C/s.)

26.2 [I]    How many electrons flow through a light bulb each second if the
current through the light bulb is 0.75 A?

From I = q/t, the charge flowing through the bulb in 1.0 s is

q = It = (0.75 A)(1.0 s) = 0.75 C

But the magnitude of the charge on each electron is e = 1.6 × 10−19

C. Therefore,

26.3 [I]    A light bulb has a resistance of 240 Ω when lit. How much current
will flow through it when it is connected across 120 V, its normal
operating voltage?

26.4 [I]    An electric heater uses 5.0 A when connected across 110 V.
Determine its resistance.

26.5 [I]    What is the potential drop across an electric hot plate that draws 5.0
A when its hot resistance is 24 Ω?



V = IR = (5.0 A)(24 Ω) = 0.12 kV

26.6 [II]  The current in Fig. 26-1 is 0.125 A in the direction shown. For each
of the following pairs of points, what is their potential difference,
and which point is at the higher potential? (a) A, B; (b) B, C; (c) C,
D; (d) D, E; (e) C, E; (f) E, C.

Fig. 26-1

Recall the following facts: (1) The current is the same (0.125 A) at
all points in this circuit because the charge has no other place to
flow. (2) Current always flows from high to low potential through
a resistor. (3) The positive terminal of a pure emf (the long side of
its symbol) is always the high-potential terminal. Mark the long
sides of the batteries with plus signs (+) and the short sides with
minus signs (−). Current streams out of the positive terminal of the
12-V battery and, in this case, flows clockwise around the circuit
because the 12-V battery dominates over the 9.0-V battery. For
each resistor place a + on the side where current enters and a −
where it leaves. When current passes through a resistor from + to
− it experiences what is called a “voltage drop.” Taking potential
drops as negative:

(a) VAB = −IR = −(0.125 A)(10.0 Ω) = −1.25 V; A is higher.
(b) VBC = −ε = −9.00 V; B is higher.
(c) VCD = −(0.125 A)(5.00 Ω) − (0.125 A)(6.00 Ω) = −1.38 V; C is

higher.
(d) VDE = +ε = +12.0 V; E is higher.
(e) VCE = −(0.125 A)(5.00 Ω) − (0.125 A)(6.00 Ω) + 12.0 V =



+10.6 V; E is higher.
(f) VEC = −(0.125 A)(3.00 Ω) − (0.125 A)(10.0 Ω) − 9.00 V =

−10.6 V; E is higher.

Notice that the answers to (e) and (f) agree with each other.

26.7 [II]  A current of 3.0 A flows through the wire shown in Fig. 26-2. What
will a voltmeter read when connected from (a) A to B, (b) A to C,
(c) A to D?

Fig. 26-2

Put plus and minus signs on all of the resistors given that the
current flows from left to right. Label each battery, as ever, with
the + on the long side of the symbol.

(a) Point-A is at the higher potential because current always flows
“downhill” through a resistor (+ to −). There is a potential drop
of IR = (3.0 A)(6.0 Ω) = 18 V from A to B. The voltmeter will
read −18 V.

(b) In going from B to C, one goes from the positive to the
negative side of the battery; hence, there is a potential drop of
8.0 V from B to C. The drop adds to the drop of 18 V from A to
B, found in (a), to give a 26 V drop from A to C. The voltmeter
will read −26 V from A to C.

(c) From C to D, there is first a drop of IR = (3.0A)(3.0 Ω) = 9.0 V
through the resistor. Then, because one goes from the negative
to the positive terminal of the 7.0 V battery, there is a 7.0-V
rise through the battery. The voltmeter connected from A to D
will read

−18 V − 8.0 V − 9.0 V + 7.0 V = −28 V

26.8 [II]  Repeat Problem 26.7 if the 3.0-A current is flowing from right to
left instead of from left to right. Which point is at the higher



potential in each case?

Proceeding as before, we have

(a) VAB = +(3.0)(6.0) = +18 V; B is higher.
(b) VAC = +(3.0)(6.0) − 8.0 = +10 V; C is higher.
(c) VAD = +(3.0)(6.0) − 8.0 + (3.0)(3.0) + 7.0 = +26 V; D is higher.

26.9 [I]  A dry cell has an emf of 1.52 V. Its terminal potential drops to zero
when a current of 25 A passes through it. What is its internal
resistance?

As is shown in Fig. 26-3, the battery acts like a pure emf ε in
series with a resistor r. We are told that, under the conditions
shown, the potential difference from A to B is zero. Therefore,

0 = +ε − Ir or 0 = 1.52 V − (25 A)r

from which the internal resistance is r = 0.061 Ω.

Fig. 26-3

26.10 [II]  A direct-current generator has an emf of 120 V; that is, its
terminal voltage is 120 V when no current is flowing from it. At an
output of 20 A, the terminal potential is 115 V. (a) What is the
internal resistance r of the generator? (b) What will be the terminal
voltage at an output of 40 A?

The situation is much like that shown in Fig. 26-3. Now,



however, ε = 120 V and I is no longer 25 A.

(a) In this case, I = 20 A and the p.d. from A to B is 115 V.
Therefore,

115 V = +120 V − (20 A)r

from which r = 0.25 Ω.

(b) Now I = 40 A. So

Terminal p.d. = ε − Ir = 120 V − (40 A)(0.25 Ω) = 110 V

26.11 [I]  As shown in Fig. 26-4 the ammeter–voltmeter method is used to
measure an unknown resistance R. The ammeter reads 0.3 A, and
the voltmeter reads 1.50 V. Compute the value of R if the ammeter
and voltmeter are ideal.

Fig. 26-4

26.12 [I]  A metal rod is 2 m long and 8 mm in diameter. Compute its
resistance if the resistivity of the metal is 1.76 × 10−8 Ω · m.



26.13 [I]  Number 10 wire has a diameter of 2.59 mm. How many meters of
number 10 aluminum wire are needed to give a resistance of 1.0
Ω? ρ for aluminum is 2.8 × 10−8 Ω · m.

From R = ρL/A,

26.14 [II] (This problem introduces a unit sometimes used in the United
States.) Number 24 copper wire has diameter 0.020 1 in. Compute (a)
the cross-sectional area of the wire in circular mils and (b) the
resistance of 100 ft of the wire. The resistivity of copper is 10.4 Ω ·
circular mils/ft.

The area of a circle in circular mils is defined as the square of the
diameter of the circle expressed in mils, where 1 mil = 0.001 in.

(a) Area in circular mils = (20.1 mil)2 = 404 circular mils

26.15 [I] The resistance of a coil of copper wire is 3.35 Ω at 0 °C. What is
its resistance at 50 °C? For a copper alloy α = 4.3 × 10−3 °C−1.

R = R0 + =R(T − T0) = 3.35 Ω + (4.3 × 10−3 °C−1)(3.35 Ω)(50 °C) = 4.1 Ω

26.16 [II]  A resistor is to have a constant resistance of 30.0 Ω, independent
of temperature. For this, an aluminum resistor with resistance R0
at 0 °C is used in series with a carbon resistor with resistance R02
at 0 °C. Evaluate R01 and R02, given that α1 = 3.9 × 10−3 °C−1 for
aluminum and α2 = −0.50 × 10−3 °C−1 for carbon.



26.17 [II] In the Bohr model, the electron of a hydrogen atom moves in a
circular orbit of radius 5.3 × 10−11 m with a speed of 2.2 × 106

m/s. Determine its frequency f and the current I in the orbit.

Each time the electron goes around the orbit, it carries a charge e
around the loop. The charge passing a point on the loop each
second is

I = ef = (1.6 × 10−19 C)(6.6 × 1015 s−1) = 1.06 × 10−3 A = 1.1 mA

26.18 [II]  A wire that has a resistance of 5.0 Ω is passed through an
extruder so as to make it into a new wire three times as long as
the original. What is the new resistance?

Use R = ρL/A to find the resistance of the new wire. To find ρ,
use the original data for the wire. Let L0 and A0 be the initial
length and cross-sectional area, respectively. Then

5.0 Ω = ρL0/A0 or ρ = (A0/L0)(5.0 Ω)

We were told that L = 3L0. To find A in terms of A0, note that the
volume of the wire cannot change. Hence,



TABLE 26-1
Resistivities*

26.19 [II]  It is desired to make a wire that has a resistance of 8.0 Ω from
5.0 cm3 of metal that has a resistivity of 9.0 × 10−8 Ω · m. What
should the length and cross-sectional area of the wire be?

Use R = ρL/A with R = 8.0 Ω and ρ = 9.0 × 10−8 Ω · m. We know
further that the volume of the wire (which is LA) is 5.0 × 10−6 m3.
Therefore, we have two equations to solve for L and A:

From them, it follows that L = 21 m and A = 2.4 × 10−7 m2.

SUPPLEMENTARY PROBLEMS



26.20 [I]  How many electrons per second pass through a section of wire
carrying a current of 0.70 A?

26.21 [I]  An electron gun in a TV set shoots out a beam of electrons. The
beam current is 1.0 × 10−5 A. How many electrons strike the TV
screen each second? How much charge strikes the screen in a
minute?

26.22 [I]  What happens to the resistance of a copper wire if its length is
doubled, all else kept constant?

26.23 [I]  What happens to the resistance of a copper wire if its diameter is
doubled, all else kept constant?

26.24 [I]  Suppose you have two wires of the same length and diameter, at
the same temperature. If one is made of nichrome and the other is
made of copper, what is the ratio of their resistances,
Rnichrome/Rcopper? [Hint: Study Table 26-1.]

26.25 [I]  What is the current through an 8.0-Ω toaster when it is operating on
120 V?

26.26 [I]  What potential difference is required to pass 3.0 A through 28 Ω?

26.27 [I]  Determine the potential difference between the ends of a wire of
resistance 5.0 Ω if 720 C passes through it per minute.

26.28 [I]  A copper bus bar carrying 1200 A has a potential drop of 1.2 mV
along 24 cm of its length. What is the resistance per meter of the
bar?

26.29 [I]  An ammeter is connected in series with an unknown resistance, and
a voltmeter is connected across the terminals of the resistance. If
the ammeter reads 1.2 A and the voltmeter reads 18 V, compute
the value of the resistance. Assume ideal meters.

26.30 [I]  An electric utility company runs two 100 m copper wires from the
street mains up to a customer’s premises. If the wire resistance is



0.10 Ω per 1000 m, calculate the line voltage drop for an estimated
load current of 120 A.

26.31 [I]  When the insulation resistance between a motor winding and the
motor frame is tested, the value obtained is 1.0 megohm (106 Ω).
How much current passes through the insulation of the motor if
the test voltage is 1000 V?

26.32 [I]  Compute the internal resistance of an electric generator that has an
emf of 120 V and a terminal voltage of 110 V when supplying 20
A.

26.33 [I]  A dry cell delivering 2 A has a terminal voltage of 1.41 V. What is
the internal resistance of the cell if its open-circuit voltage is 1.59
V?

26.34 [II]  A cell has an emf of 1.54 V. When it is in series with a 1.0-Ω
resistance, the reading of a voltmeter connected across the cell
terminals is 1.40 V. Determine the cell’s internal resistance.

26.35 [I]  The internal resistance of a 6.4-V storage battery is 4.8 mΩ. What
is the theoretical maximum current on short circuit? (In practice
the leads and connections have some resistance, and this
theoretical value would not be attained.)

26.36 [I]  A battery has an emf of 13.2 V and an internal resistance of 24.0
mΩ. If the load current is 20.0 A, find the terminal voltage.

26.37 [I]  A storage battery has an emf of 25.0 V and an internal resistance of
0.200 Ω. Compute its terminal voltage (a) when it is delivering
8.00 A and (b) when it is being charged with 8.00 A.

26.38 [II]  A battery charger supplies a current of 10 A to charge a storage
battery that has an open-circuit voltage of 5.6 V. If the voltmeter
connected across the charger reads 6.8 V, what is the internal
resistance of the battery at this time?

26.39 [II]  Find the potential difference between points-A and -B in Fig. 26-



5 if R is 0.70 Ω. Which point is at the higher potential?

Fig. 26-5

26.40 [II]  Repeat Problem 26.39 if the current flows in the opposite
direction and R = 0.70 Ω.

26.41 [II]  In Fig. 26-5, how large must R be if the potential drop from A to
B is 12 V?

26.42 [II]  For the circuit of Fig. 26-6, find the potential difference from (a)
A to B, (b) B to C, and (c) C to A. Notice that the current is given
as 2.0 A.

26.43 [I]  Compute the resistance of 180 m of silver wire having a cross
section of 0.30 mm2. The resistivity of silver is 1.6 × 10−8 Ω · m.

Fig. 26-6

26.44 [I]  A narrow germanium rod has a cross-sectional area of 1.00 cm2

and a length of 25.0 cm. Determine its resistance at ≈20 °C. [Hint:
Study Tables 26-1 and 26-2.]

26.45 [I]  Determine the resistivity of a length of aluminum wire at 100 °C.
[Hint: Study Tables 26-1 and 26-2.]

26.46 [I]  Imagine that we have a wire made of Manganin at 20 °C that has
a resistance of 100 Ω. What would be its resistance at 60 °C?



[Hint: Study Tables 26-1 and 26-2.]

26.47 [I]  The resistivity of aluminum is 2.8 × 10−8 Ω · m. How long a piece
of aluminum wire 1.0 mm in diameter is needed to give a
resistance of 4.0 Ω?

26.48 [II]  Number 6 copper wire has a diameter of 0.162 in. (a) Calculate
its area in circular mils. (b) If ρ = 10.4 Ω · circular mils/ft, find
the resistance of 1.0 × 103 ft of the wire. (Refer to Problem
26.14.)

26.49 [II]  A coil of wire has a resistance of 25.00 Ω at 20 °C and a
resistance of 25.17 Ω at 35 °C. What is its temperature coefficient
of resistance?

TABLE 26-2
Temperature coefficients of resistivity*

ANSWERS TO SUPPLEMENTARY PROBLEMS



26.20 [I]    4.4 × 1018 electron/s

26.21 [I]    6.3 × 1013 electron/s, −6.0 × 10−4 C/min

26.22 [I]    It doubles.

26.23 [I]    It is quartered.

26.24 [I]    59:1

26.25 [I]    15 A

26.26 [I]    84 V

26.27 [I]    60 V

26.28 [I]    4.2 μ Ω/m

26.29 [I]    15 Ω

26.30 [I]    2.4 V

26.31 [I]    1.0 mA

26.32 [I]    0.50 Ω

26.33 [I]    0.09 Ω

26.34 [II]    0.10 Ω

26.35 [I]    1.3 kA

26.36 [I]    12.7 V

26.37 [I]    (a) 23.4 V; (b) 26.6 V

26.38 [II]    0.12 Ω

26.39 [II]    −5.1 V, point-A



26.40 [II]    11.1 V, point-B

26.41 [II]    3.0 Ω

26.42 [II]    (a) −48 V; (b) +28 V; (c) +20 V

26.43 [I]    9.6 Ω

26.44 [I]    1.2 kΩ

26.45 [I]    3.7 × 10–8 Ω · m

26.46 [I]    100 Ω

26.47 [I]    0.11 km

26.48 [II]    (a) 26.0 × 103 circular mils; (b) 0.40 Ω

26.49 [II]    4.5 × 10−4 °C−1



Electrical Power

The Electrical Work (in joules) required to transfer a charge q (in
coulombs) through a potential difference V (in volts) is given by

When q and V are given their proper signs (i.e., voltage rises are positive,
and drops negative), the work will have its proper sign. Thus, to carry a
positive charge through a potential rise, a positive amount of work must be
done on the charge.

The Electrical Power (P), in watts, delivered by an energy source as it
carries a charge q (in coulombs) through a potential rise V (in volts) in a
time t (in seconds) is

Because q/t = I, this can be rewritten as

where I is in amperes.

The Power Loss in a Resistor is found by replacing V in VI by IR, or by
replacing I in VI by V/R, to obtain



The Thermal Energy Generated in a Resistor per second is equal to the
power loss in the resistor:

Convenient Conversions:

PROBLEM SOLVING GUIDE

Keep in mind that however much energy is dissipated by the resistors in a
circuit, the same amount is supplied by the batteries. Regarding the power
dissipated by a resistor, you can check your work by using both P = I2R and
P = IV.

SOLVED PROBLEMS

27.1 [I]    Compute the work and the average power required to transfer 96
kC of charge in one hour (1.0 h) through a potential rise of 50 V.

The work done equals the change in potential energy:

W = qV = (96 000 C)(50 V) = 4.8 × 106 J = 4.8 MJ

Power is the rate of transferring energy:

27.2 [I]    How much current does a 60-W light bulb draw when connected to
its proper voltage of 120 V?

From P = VI,



27.3 [I]    An electric motor takes 5.0 A from a 110 V line. Determine the
power input and the energy, in J and kW ⋅ h, supplied to the motor
in 2.0 h.

27.4 [I]    An electric iron of resistance 20 Ω takes a current of 5.0 A.
Calculate the thermal energy, in joules, developed in 30 s.

27.5 [II]   An electric heater of resistance 8.0 Ω draws 15 A from the service
mains. At what rate is thermal energy developed, in W? What is
the cost of operating the heater for a period of 4.0 h at 10 /kW ·
h?

27.6 [II]   A coil develops 800 cal/s when 20 V is supplied across its ends.
Compute its resistance.

P = (800 cal/s)(4.184 J/cal) = 3347 J/s

Then, because P = V2/R,

27.7 [II]   A line having a total resistance of 0.20 Ω delivers 10.00 kW at 250
V to a small factory. What is the efficiency of the transmission?

The line dissipates power due to its resistance. Consequently we’ll
need to find the current in the line. Use P = VI to find I = P/V.
Then



27.8 [II]   A hoist motor supplied by a 240-V source requires 12.0 A to lift an
800-kg load at a rate of 9.00 m/min. Determine the power input to
the motor and the power output, both in horsepower, and the
overall efficiency of the system.

27.9 [II]   The lights on a car are inadvertently left on. They dissipate 95.0 W.
About how long will it take for the fully charged 12.0-V car
battery to run down if the battery is rated at 150 ampere-hours (A ·
h)?

As an approximation, assume the battery maintains 12.0 V until it
goes dead. Its 150-A ⋅ h rating means it can supply the energy
equivalent of a 150-A current that flows for 1.00 h (3600 s).
Therefore, the total energy the battery can supply is

Total output energy = (Power)(Time) = (VI)t = (12.0 V × 150 A)
(3600 s) = 6.48 × 106 J

The energy consumed by the lights in a time t is

Energy dissipated = (95 W)(t)

Equating these two energies and solving for t, we find t = 6.82 ×
104 s = 18.9 h.

27.10 [II] What is the cost of electrically heating 50 liters of water from 40
°C to 100 °C at 8.0 /kW · h?



SUPPLEMENTARY PROBLEMS

27.11 [I]     If the current supplied to a resistor is doubled, what happens to
the power it dissipates?

27.12 [I]     A 12.0-V battery supplies 20.0 mA to a resistive circuit. How
much power does it provide?

27.13 [I]     A length of wire has a certain current passing through it. If the
length of the wire sample is doubled, all else kept constant
including the current, what happens to the amount of power
dissipated by the wire?

27.14 [I]     A 12.0-V battery is put across a 100-Ω resistor. How much
current flows through the resistor? How much power does the
battery supply?

27.15 [I]     A 12.0-V car battery supplies 15.0 A to a resistor. How much
power does the resistor dissipate? Determine the value of the
resistance.

27.16 [I]     A resistive heater is labeled 1600 W/120 V. How much current
does the heater draw from a 120-V source?

27.17 [I]     A bulb is stamped 40 W/120 V. What is its resistance when
lighted by a 120-V source?

27.18 [II]    A spark of artificial 10.0-MV lightning had an energy output of
0.125 MW · s. How many coulombs of charge flowed?

27.19 [II]    A current of 1.5 A exists in a conductor whose terminals are



connected across a potential difference of 100 V. Compute the
total charge transferred in one minute, the work done in
transferring this charge, and the power expended in heating the
conductor if all the electrical energy is converted into heat.

27.20 [II]    An electric motor takes 15.0 A at 110 V. Determine (a) the
power input and (b) the cost of operating the motor for 8.00 h at
10.0  / kW · h.

27.21 [I]     A current of 10 A exists in a line of 0.15 Ω resistance. Compute
the rate of production of thermal energy in watts.

27.22 [II]    An electric broiler develops 400 cal/s when the current through it
is 8.0 A. Determine the resistance of the broiler.

27.23 [II]    A 25.0-W, 120-V bulb has a cold resistance of 45.0 Ω. When the
voltage is switched on, what is the instantaneous current? What is
the current under normal operation?

27.24 [II]    While carrying a current of 400 A, a defective switch becomes
overheated due to faulty surface contact. A millivoltmeter
connected across the switch shows a 100-mV drop. What is the
power loss due to the contact resistance?

27.25 [II]    How much power does a 60-W/120-V incandescent light bulb
dissipate when operated at a voltage of 115 V? Neglect the bulb’s
decrease in resistance with lowered voltage.

27.26 [II]    A house wire is to carry a current of 30 A while dissipating no
more than 1.40 W of heat per meter of its length. What is the
minimum diameter of the wire if its resistivity is 1.68 × 10–8 Ω ·
m?

27.27 [II]    A 10.0-Ω electric heater operates on a 110-V line. Compute the
rate at which it develops thermal energy in W and in cal/s.

27.28 [III] An electric motor, which has 95 percent efficiency, uses 20 A at
110 V. What is the horsepower output of the motor? How many



watts are lost in thermal energy? How many calories of thermal
energy are developed per second? If the motor operates for 3.0 h,
what energy, in MJ and in kW · h, is dissipated?

27.29 [II]    An electric crane uses 8.0 A at 150 V to raise a 450-kg load at
the rate of 7.0 m/min. Determine the efficiency of the system.

27.30 [III] What should be the resistance of a heating coil which will be
used to raise the temperature of 500 g of water from 28 °C to the
boiling point in 2.0 minutes, assuming that 25 percent of the heat
is lost? The heater operates on a 110-V line.

27.31 [II]    Compute the cost per hour at 8.0  / kW · h of electrically
heating a room, if it requires 1.0 kg/h of anthracite coal having a
heat of combustion of 8000 kcal/kg.

27.32 [II]    Power is transmitted at 80 kV between two stations. If the
voltage can be increased to 160 kV without a change in cable
size, how much additional power can be transmitted for the same
current? What effect does the power increase have on the line
heating loss?

27.33 [II]    A storage battery, of emf 6.4 V and internal resistance 0.080 Ω,
is being charged by a current of 15 A. Calculate (a) the power
loss in internal heating of the battery, (b) the rate at which energy
is stored in the battery, and (c) its terminal voltage.

27.34 [II]    A tank containing 200 kg of water was used as a constant-
temperature bath. How long would it take to heat the bath from
20 °C to 25 °C with a 250-W immersion heater? Neglect the heat
capacity of the tank frame and any heat losses to the air.

ANSWERS TO SUPPLEMENTARY PROBLEMS

27.11 [I]     It quadruples.



27.12 [I]     0.24 W

27.13 [I]     It doubles.

27.14 [I]     0.120 A; 1.44 W

27.15 [I]     180 W; 0.800 Ω

27.16 [I]     13.3 A

27.17 [I]     0.36 kΩ

27.18 [II]    0.012 5 C

27.19 [II]    90 C, 9.0 kJ, 0.15 kW

27.20 [II]    (a) 1.65 kW; (b) $1.32

27.21 [I]     15 W

27.22 [II]    26 Ω

27.23 [II]    2.67 A, 0.208 A

27.24 [II]    40.0 W

27.25 [II]    55 W

27.26 [II]    3.7 mm

27.27 [II]    1.21 kW = 290 cal/s

27.28 [III] 2.8 hp, 0.11 kW, 26 cal/s, 24 MJ = 6.6 kW ⋅ h

27.29 [II]    43%

27.30 [III] 7.2 Ω

27.31 [II]    74  / h



27.32 [II]    Additional power = Original power, no effect

27.33 [II]    (a) 18 W; (b) 96 W; (c) 7.6 V

27.34 [II]    4.6 h



Equivalent Resistance; Simple Circuits

Resistors in Series: When current can follow only one path as it flows
through two or more resistors connected in line, the resistors are in series. In
other words, when one and only one terminal of a resistor is connected
directly to one and only one terminal of another resistor, the two are in
series and the same current passes through both. A node is a point where
three or more current-carrying wires or branches meet. There are no nodes
between circuit elements (such as capacitors, resistors, and batteries) that are
connected in series. A typical case is shown in Fig. 28-1(a). For several
resistors in series, their equivalent resistance Req is given by

where R1, R2, R3, ..., are the resistances of the several resistors and each is in
series with all of the others. Observe that resistances in series combine like
capacitances in parallel (see Chapter 25). It is assumed that all connection
wire is effectively resistanceless.

In a series combination, the current through each resistance is the same as
that through all the others. The potential drop (p.d.) across the combination
is equal to the sum of the individual potential drops. The equivalent
resistance in series is always greater than the largest of the individual
resistances.

Resistors in Parallel: Several resistors are connected in parallel between
two nodes if one end of each resistor is connected to one node and the other
end of each is connected to the other node. A typical case is shown in Fig.
28-1(b), where points a and b are nodes. Their equivalent resistance Req is
given by



Fig. 28-1

The equivalent resistance in parallel is always less than the smallest of the
individual resistances. Connecting additional resistances in parallel
decreases Req for the combination. Observe that resistances in parallel
combine like capacitances in series (see Chapter 25).

The potential drop V across any one resistor in a parallel combination is
the same as the potential drop across each of the others. The current through
the nth resistor is In = V/Rn and the total current entering the combination is
equal to the sum of the individual branch currents [see Fig. 28-1(b)].

PROBLEM SOLVING GUIDE

When analyzing simple circuits (e.g., a bunch of resistors and a battery),
first deal with all the obvious series and parallel combinations. Then
determine the equivalent resistance (Req). Redraw the circuit several times
as you progress. The final configuration will be Req across the voltage
source. Compute the current through Req using Ohm’s Law. That’s the
current coming out of the battery and entering the rest of the circuit. Put it
into your next-to-last diagram and press on. Go back to each earlier more
complicated diagram, one by one filling in voltages and currents.

SOLVED PROBLEMS

28.1 [II]  Derive the formula for the equivalent resistance Req of resistors R1,
R2, and R3 (a) in series and (b) in parallel, as shown in Fig. 28-



1(a) and (b).
(a) For the series network,

Vad = Vab + Vbc + Vcd = IR1 + IR2 + IR3

since the current I is the same in all three resistors. Dividing by I
gives

since Vad/I is by definition the equivalent resistance Req of the
network.

(b) The p.d. is the same for all three resistors, whence

Since the line current I is the sum of the branch currents,

Dividing by Vab gives

since Vab/I is by definition the equivalent resistance Req of the
network.

28.2 [II]  As shown in Fig. 28-2(a), a battery (internal resistance 1 Ω) is
connected in series with two resistors. Compute (a) the current in
the circuit, (b) the p.d. across each resistor, and (c) the terminal
p.d. of the battery.



Fig. 28-2

The circuit is redrawn in Fig. 28-2(b) so as to show the battery
resistance. The resistors are in series,

Req = 5 Ω + 12 Ω + 1 Ω = 18 Ω

Hence, the circuit is equivalent to the one shown in Fig. 28-2(c).
Applying V = IR,

(b) Since I = 1.0 A, we can find the p.d. from point-b to point-c as

Vbc = IRbc = (1.0 A)(12 Ω) = 12 V

and that from c to d as

Vcd = IRcd = (1.0 A)(5 Ω) = 5 V

Notice that I is the same at all points in a series circuit.

(c) The terminal p.d. of the battery is the p.d. from a to e.
Therefore,

Terminal p.d. = Vbc + Vcd = 12 + 5 = 17 V

Or, we could start at e and keep track of the voltage changes as we
go through the battery from e to a. Taking voltage drops as
negative,

Terminal p.d. = -Ir + ε = -(1.0 A)(1 Ω) + 18 V = 17 V



28.3 [II]  A 120-V house circuit has the following light bulbs turned on: 40.0
W, 60.0 W, and 175.0 W. Find the equivalent resistance of these
lights.

House circuits are so constructed that each device is connected in
parallel with the others. From P = VI = V2/R, for the first bulb

Similarly, R2 = 240 Ω and R3 = 192 Ω. Because devices in a house
circuit are in parallel,

As a check, note that the total power drawn from the line is 40.0
W + 60.0 W + 75.0 W = 75.0 W. Then, using P = V2/R,

28.4 [I]    What resistance must be placed in parallel with 12 Ω to obtain a
combined resistance of 4 Ω?

28.5 [II]  Several 40-Ω resistors are to be connected so that 15 A flows from
a 120-V source. How can this be done?

The equivalent resistance must be such that 15 A flows from 120
V. Thus,



The resistors must be in parallel, since the combined resistance is
to be smaller than any of them. If the required number of 40-Ω
resistors is n, then

28.6 [II]  For each circuit shown in Fig. 28-3, determine the current I through
the battery.

Fig. 28-3

(a) The 3.0-Ω and 7.0-Ω resistors are in parallel; their joint
resistance R1 is found from

Then the equivalent resistance of the entire circuit is

Req = 2.1 Ω + 5.0 Ω + 0.4 Ω = 7.5 Ω

and the battery current is

(b) The 7.0-Ω, 1.0-Ω, and 10.0-Ω resistors are in series; their joint
resistance is 18.0 Ω. Then 18.0 Ω is in parallel with 6.0 Ω; their



combined resistance R1 is given by

Hence, the equivalent resistance of the entire circuit is

Req = 4.5 Ω + 2.0 Ω + 8.0 Ω + 0.3 Ω = 14.8 Ω

and the battery current is

(c) The 5.0-Ω and 19.0-Ω resistors are in series; their joint
resistance is 24.0 Ω. Then 24.0 Ω is in parallel with 8.0 Ω; their
joint resistance R1 is given by

Now R1 = 6.0 Ω is in series with 15.0 Ω; their joint resistance is
6.0 Ω + 15.0 Ω = 21.0 Ω. Thus, 21.0 Ω is in parallel with 9.0 Ω;
their combined resistance is found from

Hence, the equivalent resistance of the entire circuit is

Req = 6.3 Ω + 2.0 Ω + 0.2 Ω = 8.5 Ω

and the battery current is

28.7 [II]   For the circuit shown in Fig. 28-4, find the current in each resistor
and the current drawn from the 40-V source.



Fig. 28-4

Notice that the p.d. from a to b is 40 V. Therefore, the p.d. across
each resistor is 40 V. Then,

Because I splits into three currents:

I = I2 + I5 + I8 = 20 A + 8.0 A + 5.0 A = 33 A

28.8 [II]  In Fig. 28-5, the battery has an internal resistance of 0.7 Ω. Find (a)
the current drawn from the battery, (b) the current in each 5-Ω
resistor, and (c) the terminal voltage of the battery.

Fig. 28-5



(a) First we’ll have to find the equivalent resistance of the entire
circuit, and with that and Ohm’s Law, determine the current.
For parallel group resistance R1 we have

(b) Method 1

The three-resistor combination is equivalent to R1 = 5.0 Ω. A
current of 4.0 A flows through it. Hence, the p.d. across the
combination is

IR = (4.0 A)(5.0 Ω) = 20 V

This is also the p.d. across each 15-Ω resistor. Therefore, the
current through each 15-Ω resistor is

Method 2

In this special case, we know that one-third of the current will go
through each 15-Ω resistor. Hence,

(c) Start at a and go to b outside the battery:

V from a to b = -(4.0 A)(0.3 Ω) - (4.0 A)(5.0 Ω) = -21.2 V

The terminal p.d. of the battery is 21.2 V. Or, we could write for
this case of a discharging battery,



Terminal p.d. = ε - Ir = 24 V - (4.0 A)(0.7 Ω) = 21.2 V

28.9 [II]  Find the equivalent resistance between points-a and -b for the
combination shown in Fig. 28-6(a).

Fig. 28-6

The 3.0-Ω and 2.0-Ω resistors are in series and are equivalent to a
5.0-Ω resistor. The equivalent 5.0 Ω is in parallel with the 6.0 Ω,
and their equivalent, R1, is

The circuit thus far reduced is shown in Fig. 28-6(b).

The 7.0 Ω and 2.73 Ω are equivalent to 9.73 Ω. Now the 5.0 Ω,
12.0 Ω, and 9.73 Ω are in parallel, and their equivalent, R2, is

This 2.6 Ω is in series with the 9.0-Ω resistor. Therefore, the
equivalent resistance of the combination is 9.0 Ω + 2.6 Ω = 11.6
Ω.

28.10 [II]  A current of 5.0 A flows into the circuit in Fig. 28-6(a) at point-a
and out at point-b. (a) What is the potential difference from a to
b? (b) How much current flows through the 12.0-Ω resistor?

In Problem 28.9, we found that the equivalent resistance for this
combination is 11.6 Ω, and we are told the current through it is
5.0 A.



(a) Voltage drop from a to b = IReq = (5.0 A)(11.6 Ω) = 58 V
(b) The voltage drop from a to c is (5.0 A)(9.0 Ω) 45 V. Hence, from

part (a), the voltage drop from c to b is

58 V - 45 V = 13 V

and the current in the 12.0-Ω resistor is

28.11 [II]  As shown in Fig. 28-7, the current I divides into I1 and I2. Find I1
and I2 in terms of R1, and R2.

Fig. 28-7

The potential drops across R1 and R2 are the same because the
resistors are in parallel, so

I1R1 = I2R2

But I = I1 + I2 and so I2 = I - I1. Substituting in the first equation
gives

Using this result together with the first equation gives

28.12 [II]  Find the potential difference between points-P and -Q in Fig. 28-
8. Which point is at the higher potential?



Fig. 28-8

From the result of Problem 28.11, the currents through P and Q
are

Now we start at point-P and go through point-a to point-Q, to
find

Voltage change from P to Q = +(4.0 A)(10 Ω) - (3.0 A)(2 Ω) = +34 V

(Notice that we go through a potential rise from P to a because
we are going against the current. From a to Q there is a drop.)
Therefore, the voltage difference between P and Q is 34 V, with
Q being at the higher potential.

28.13 [II]  For the circuit of Fig. 28-9(a), find (a) I1 I2, and I3; (b) the
current in the 12-Ω resistor.



Fig. 28-9

a) The circuit reduces at once to that shown in Fig. 28-9(b). There
we have 24 Ω in parallel with 12 Ω, so the equivalent resistance
below points-a and -b is

Adding to this the 1.0-Ω internal resistance of the battery gives a
total equivalent resistance of 9.0 Ω. To find the current from the
battery, we write

This same current flows through the equivalent resistance below
a and b, and so

p.d. from a to b = p.d. from c to d = I1 Rab = (3.0 A)(8.0 Ω) = 24 V

Applying V = IR to branch cd gives

As a check, note that I2 + I3 = 3.0 A = I1, as it should be.



(b) Because I2 = 1.0 A, the p.d. across the 2.0-Ω resistor in Fig. 28-
9(b) is (1.0 A)(2.0 Ω) = 2.0 V. But this is also the p.d. across the
12-Ω resistor in Fig. 28-9(a). Applying V = IR to the 12 Ω gives

28.14 [II]  A galvanometer has a resistance of 400 Ω and deflects full scale
for a current of 0.20 mA through it. How large a shunt resistor is
required to change it to a 3.0-A ammeter?

In Fig. 28-10 we label the galvanometer G and the shunt
resistance Rs. At full-scale deflection, the currents are as shown:

Fig. 28-10

The voltage drop from a to b across G is the same as that across
Rs. Therefore,

(2.999 8 A)Rs = (2.0 × 10-4 A)(400 Ω)

from which Rs = 0.027 Ω.

28.15 [II]  A voltmeter is to deflect full scale for a potential difference of
5.000 V across it and is to be made by connecting a resistor Rx in
series with a galvanometer. The 80.00-Ω galvanometer deflects
full scale for a potential of 20.00 mV across it. Find Rx.

When the galvanometer is deflecting full scale, the current



through it is

When Rx is connected in series with the galvanometer, we wish I
to be 2.500 × 10-4 A for a potential difference of 5.000 V across
the combination. Hence, V = IR becomes

5.000 V = (2.500 × 10-4 A)(80.00 Ω + Rx)

from which Rx = 19.92 kΩ.

28.16 [III] The currents in the circuit in Fig. 28-11 are steady. Find I1, I2, I3,
and the charge on the capacitor.

Fig. 28-11

When a capacitor has a constant charge, as it does here, the
current flowing to it is zero. Therefore, I2 = 0, and the circuit
behaves just as though the center wire were missing.

With the center wire missing, the remaining circuit is simply 12
Ω connected across a 15-V battery. Therefore,

In addition, because I2 = 0, we have I3 = I1 = 1.3 A.



To find the charge on the capacitor, first find the voltage
difference between points-a and -b. Start at a and go around the
upper path.

Voltage change from a to b = -(5.0 Ω)I3 + 6.0 V + (3.0 Ω)I2

= -(5.0 Ω)(1.25 A) + 6.0 V + (3.0 Ω)(0) = -0.25 V

Therefore, b is at the lower potential and the capacitor plate at b
is negative. To find the charge on the capacitor,

Q = CVab = (2 × 10-6 F)(0.25 V) = 0.5 µC

28.17 [II]  Find the ammeter reading and the voltmeter reading in the circuit
in Fig. 28-12. Assume both meters to be ideal.

Fig. 28-12

The ideal voltmeter has infinite resistance, and so its wire can be
removed without altering the circuit. The ideal ammeter has zero
resistance. It can be shown (see Chapter 29) that batteries in
series simply add or subtract. The two 6.0-V batteries cancel each
other because they tend to push current in opposite directions. As
a result, the circuit behaves as though it had a single 8.0-V
battery that causes a clockwise current.

The equivalent resistance is 3.0 Ω + 4.0 Ω + 9.0 Ω = 16.0 Ω, and
the equivalent battery is 8.0 V. Therefore,



and this is what the ammeter will read.

Adding up the voltage changes from a to b around the right-hand
side of the circuit gives

Voltage change from a to b = -6.0 V + 8.0 V - (0.50 A)(9.0 Ω) = -2.5 V

Therefore, a voltmeter connected from a to b will read 2.5 V,
with b being at the lower potential.

SUPPLEMENTARY PROBLEMS

28.18 [I]  Compute the equivalent resistance of 4.0 Ω and 8.0 Ω (a) in series
and (b) in parallel.

28.19 [I]  Compute the equivalent resistance of (a) 3.0 Ω, 6.0 Ω, and 9.0 Ω in
parallel; (b) 3.0 Ω, 4.0 Ω, 7.0 Ω, 10.0 Ω, and 12.0 Ω in parallel;
(c) three 33-Ω heating elements in parallel; (d) twenty 100-Ω
lamps in parallel.

28.20 [I]  What resistance must be placed in parallel with 20 Ω to make the
combined resistance 15 Ω?

28.21 [II]  How many 160-Ω resistors (in parallel) are required to carry a
total of 5.0 A on a 100-V line?

28.22 [II]  Three resistors, of 8.0 Ω, 12 Ω, and 24 Ω, are in parallel, and a
current of 20 A is drawn by the combination. Determine (a) the
potential difference across the combination and (b) the current
through each resistance.

28.23 [II]  By use of one or more of the three resistors 3.0 Ω, 5.0 Ω, and 6.0
Ω, a total of 18 resistances can be obtained. What are they?



28.24 [II]  Two resistors, of 4.00 Ω and 12.0 Ω, are connected in parallel
across a 22-V battery having internal resistance 1.00 Ω. Compute
(a) the battery current, (b) the current in the 4.00-Ω resistor, (c)
the terminal voltage of the battery, (d) the current in the 12.0-Ω
resistor.

28.25 [II]  Three resistors, of 40 Ω, 60 Ω, and 120 Ω, are connected in
parallel, and this parallel group is connected in series with 15 Ω
in series with 25 Ω. The whole system is then connected to a 120-
V source. Determine (a) the current in the 25 Ω, (b) the potential
drop across the parallel group, (c) the potential drop across the 25
Ω, (d) the current in the 60 Ω, (e) the current in the 40 Ω.

28.26 [II]  What shunt resistance should be connected in parallel with an
ammeter having a resistance of 0.040 Ω so that 25 percent of the
total current will pass through the ammeter?

28.27 [II]  A 36-Ω galvanometer is shunted by a resistor of 4.0 Ω. What part
of the total current will pass through the instrument?

28.28 [II]  A relay having a resistance of 6.0 Ω operates with a minimum
current of 0.030 A. It is required that the relay operate when the
current in the line reaches 0.240 A. What resistance should be
used to shunt the relay?

28.29 [II]  Show that if two resistors are connected in parallel, the rates at
which they produce thermal energy vary inversely as their
resistances.

28.30 [II]  For the circuit shown in Fig. 28-13, find the current through each
resistor and the potential drop across each resistor.



Fig. 28-13

28.31 [II]  For the circuit shown in Fig. 28-14, find (a) its equivalent
resistance; (b) the current drawn from the power source; (c) the
potential differences across ab, cd, and de; (d) the current in each
resistor.

Fig. 28-14

28.32 [II]  It is known that the potential difference across the 6.0-Ω
resistance in Fig. 28-15 is 48 V. Determine (a) the entering
current I, (b) the potential difference across the 8.0-Ω resistance,
(c) the potential difference across the 10-Ω resistance, (d) the
potential difference from a to b. [Hint: The wire connecting c and
d can be shrunk to zero length without altering the currents or



potentials.]

Fig. 28-15

28.33 [II]  In the circuit shown in Fig. 28-16, 23.9 calories of thermal
energy are produced each second in the 4.0-Ω resistor. Assuming
the ammeter and two voltmeters to be ideal, what will be their
readings?

Fig. 28-16

28.34 [II]  For the entire circuit shown in Fig. 28-17, find (a) the equivalent
resistance; (b) the currents through the 5.0-Ω, 7.0-Ω, and 3.0-Ω
resistors; (c) the total power delivered by the battery to the
external circuit.



Fig. 28-17

28.35 [II]  In the circuit shown in Fig. 28-18, the ideal ammeter registers 2.0
A. (a) Assuming XY to be a resistance, find its value. (b)
Assuming XY to be a battery (with 2.0-Ω internal resistance) that
is being charged, find its emf. (c) Under the conditions of part
(b), what is the potential change from point-Y to point-X?

Fig. 28-18

28.36 [II]  The Wheatstone bridge shown in Fig. 28-19 is being used to
measure resistance X. At balance, the current through the
galvanometer G is zero and resistances L, M, and N are 3.0 Ω, 2.0
Ω, and 10 Ω, respectively. Find the value of X.



Fig. 28-19

28.37 [II]  The slidewire Wheatstone bridge shown in Fig. 28-20 is balanced
(refer back to Problem 28.36) when the uniform resistive slide
wire AB is divided as shown. Find the value of the resistance X.

Fig. 28-20

28.38 [II]  Referring to the circuit in Fig. 28-21, determine (a) the
equivalent resistance, (b) the current that flows through R5, (c)
the current that flows through R1, (d) the current that flows
through R7, (e) the power dissipated by R5, (f) the voltage across
R2, and (g) the power supplied by the battery.



Fig. 28-21

28.39 [II]  Referring to the circuit in Fig. 28-22, determine (a) the
equivalent resistance between terminals A and B. If a 15.0-V dc
power supply were placed across A and B, (b) how much current
would flow through the 1.0-Ω resistor? (c) Calculate the net
power that would be dissipated by all the resistors.



Fig. 28-22

ANSWERS TO SUPPLEMENTARY PROBLEMS

28.18 [I]    (a) 12 Ω; (b) 2.7 Ω

28.19 [I]    (a) 1.6 Ω; (b) 1.1 Ω; (c) 11 Ω; (d) 5.0 Ω

28.20 [I]    60 Ω

28.21 [II]    8

28.22 [II]    (a) 80 V; (b) 10 A, 6.7 A, 3.3 A

28.23 [II]    0.70 Ω, 1.4 Ω, 1.9 Ω, 2.0 Ω, 2.4 Ω, 2.7 Ω, 3.0 Ω, 3.2 Ω, 3.4 Ω,
5.0 Ω, 5.7 Ω, 6.0 Ω, 7.0 Ω, 7.9 Ω, 8.0 Ω, 9.0 Ω, 11 Ω, 14 Ω



28.24 [II]    (a) 5.5 A; (b) 4.1 A; (c) 17 V; (d) 1.4 A

28.25 [II]    (a) 2.0 A; (b) 40 V; (c) 50 V; (d) 0.67 A; (e) 1.0 A

28.26 [II]    0.013 Ω

28.27 [II]    1/10

28.28 [II]    0.86 Ω

28.30 [II]    for 20 Ω, 3.0 A and 60 V; for 75 Ω, 2.4 A and 180 V; for 300 Ω,
0.6 A and 180 V

28.31 [II]    (a) 15 Ω; (b) 20 A; (c) Vab = 80 V, Vcd = 120 V, Vde = 100 V;
(d) I4 = 20 A, I10 = 12 A, I15 = 8 A, I9 = 11.1 A, I18 = 5.6 A, I30
= 3.3 A

28.32 [II]    (a) 12 A; (b) 96 V; (c) 60 V; (d) 204 V

28.33 [II]    5.8 A, 8.0 V, 58 V

28.34 [II]    (a) 10 Ω; (b) 12 A, 6.0 A, 2.0 A; (c) 1.3 kW

28.35 [II]    (a) 5.0 Ω; (b) 6.0 V; (c) -10 V

28.36 [II]    15 Ω

28.37 [II]    2 Ω

28.38 [II]    (a) 12 Ω; (b) 1.0 A; (c) 0.50 A; (d) 0; (e) 7.0 W; (f) 4.0 V; (g) 12
W

28.39 [II]    (a) 5.0 Ω; (b) 3.0 A; (c) 45 W



Kirchhoff’s Laws

Kirchhoff’s Node (or Junction) Rule: The sum of all the currents coming
into a node (i.e., a junction where three or more current-carrying leads or
branches attach) must equal the sum of all the currents leaving that node. If
we designate the currents-in as positive and the currents-out as negative,
then the sum of the currents equals zero is a common alternative statement
of the rule.

Kirchhoff’s Loop (or Circuit) Rule: As one traces around any closed path
(or loop) in a circuit, the algebraic sum of the potential changes encountered
is zero. In this sum, a potential (i.e., voltage) rise is positive and a potential
drop is negative.

Current always flows from high to low potential through a resistor. As
one traces through a resistor in the direction of the current, the potential
change is negative because it is a potential drop. Once you either know or
assume the direction of current, label the resistors with a + sign on the side
at which current enters and a - sign on the side at which current emerges.

The positive terminal of a pure emf source is always the high-potential
terminal, independent of the direction of the current through the emf source.
Label all voltage sources with a + sign on the high side and a - sign on the
low side. When dealing with the symbol for a battery the longer line is the
high side.

The Set of Equations Obtained by use of Kirchhoff’s loop rule will be
independent provided that each new loop equation contains at least one
voltage change not included in a previous equation.



SOLVED PROBLEMS

29.1 [II]  Find the currents in the circuit shown in Fig. 29-1.

Notice that the signs of the voltage drops have been provided in
the circuit diagram. You will not need them in this solution, but
it’s a good habit to put them in as a first step.

This circuit cannot be reduced further because it contains no
resistors in simple series or parallel combinations. We therefore
revert to Kirchhoff’s rules. If the currents had not been labeled and
shown by arrows, we would do that first. In general, special care is
needed in assigning the current directions, since those chosen
incorrectly will simply give negative numerical values. In this
problem there are three branches connecting nodes-a and -b, and
therefore three currents.

Apply the node rule to node-b in Fig. 29-1:

Fig. 29-1

Next apply the loop rule to loop adba. In volts,



(Why must the term 7.0 I1 have a negative sign?) Then apply the
loop rule to loop abca. In volts,

(Why must the signs be as written?)

Now return to Eq. (1) to find

The minus sign tells us that I3 is opposite in direction to that
shown in the figure.

29.2 [II]  For the circuit shown in Fig. 29-2, find I1, I2, and I3 if switch S is
(a) open and (b) closed.

Fig. 29-2

(a) When S is open, I3 = 0, because no current can flow through the
middle branch. Applying the node rule to point-a,

I1 + I3 = I2     or     I2 = I1 + 0 = I1

Applying the loop rule to the outer loop acbda yields



To understand the use of signs, remember that current always
flows from high to low potential through a resistor.

Because I2 = I1, Eq. (1) becomes

15.0 I1     or     I1 = 0.20 A

Also, I2 = I1 = 0.20 A. Notice that this is the same result that one
would obtain by replacing the two batteries by a single 3.0-V
battery.
(b) With S closed, I3 is no longer necessarily zero. Applying the

node rule to point-a gives

Applying the loop rule to loop acba

and to loop adba gives

Applying the loop rule to the remaining loop, acbda, would yield a
redundant equation, because it would contain no new voltage
change.

Now solve Eqs. (2), (3), and (4) for I1, I2, and I3. From Eq. (4),

I3 = −2.0 I2 − 2.25

Substituting this in Eq. (3) yields

− 12.0 + 7.0 I1 + 9.0 + 8.0 I2 = 0     or     7.0 I1 + 8.0 I2 = 3.0

Substituting for I3 in Eq. (2) also gives

I1 − 2.0 I2 − 2.25 − I2     or     I1 = 3.0 I2 + 2.25



Substituting this value in the previous equation finally leads to

21.0 I2 + 15.75 + 8.0 I2 = 3.0     or     I2 = −0.44 A

Using this in the equation for I1,

I1 = 3.0(−0.44) + 2.25 = −1.32 + 2.25 = 0.93 A

Notice that the minus sign is a part of the value we have found for
I2. It must be carried along with its numerical value. Now use (2)
to find

I3 = I2 - I1 = (-0.44) - 0.93 = -1.37 A

29.3 [II]  Each of the cells shown in Fig. 29-3 has an emf of 1.50 V and a
0.075 0-Ω internal resistance. Find I1, I2, and I3.

Fig. 29-3

Applying the node rule to point-a gives

Applying the loop rule to loop abcea yields, in volts,

Also, for loop adcea,



Solve Eq. (2) for 3.00 I1 and substitute in Eq. (3) to get

3.00 − 0.150 I3 + 0.150 I2 = 3.00     or     I2 = I3

as we might have guessed from the symmetry of the problem.
Then Eq. (1) yields

I1 = 2 I2

and substituting this in Eq. (2),

6.00 I2 + 0.150 I2 = 3.00     or     I2 = 0.488 A

Then, I3 = I2 = 0.488 A and and I1 = 2 I2 = 0.976 A.

29.4 [III]  The currents are steady in the circuit of Fig. 29-4. Find I1, I2, I3,
I4, I5, and the charge on the capacitor.

The capacitor passes no current when charged, and so I5 = 0.
Consider loop acba. The loop rule leads to

−8.0 + 4.0 I2 = 0     or     I2 = 2.0 A

Using loop adeca gives

−3.0 I1 −9.0 + 8.0 = 0     or     I1 = −0.33 A



Fig. 29-4

Applying the node rule at point-c results in

I1 + I5 + I2 = I3     or     I3 = 1.67 A = 1.7 A

and at point-a, it yields

I3 = I4 + I2     or     I4 = -0.33 A

(We should have realized this at once, because I5 = 0 and so I4 =
I1.)

To find the charge on the capacitor, we need the voltage Vfg
across it. Put in all the signs on the resistors, batteries, and
capacitor. Applying the loop rule to loop dfgced gives

−2.0 I5 + Vfg − 7.0 + 9.0 + 3.0 I1 = 0     or     0 + Vfg − 7.0 + 9.0 − 1.0 = 0

from which Vfg = -1.0 V. The minus sign tells us that plate g is
negative. The capacitor’s charge is

Q = CV = (5.0 µF)(1.0 V) = 5.0 µC

29.5 [III]  For the circuit shown in Fig. 29-5, the resistance R is 5.0 Ω and ε
= 20 V. Find the readings of the ammeter and the voltmeter.



Assume the meters to be ideal.

Fig. 29-5

The ideal voltmeter has infinite resistance (no current passes
through it), and so it can be removed from the circuit with no
effect. Write the loop equation for loop cdefc:

−RI1 + 12.0 − 8.0 − 7.0 I2 = 0

which becomes

Next write the loop equation for loop cdeac. It is

But the node rule applied at e gives

Substituting Eq. (3) in Eq. (1) yields

5.0 I1 + 7.0 I1 + 7.0 I3 = 4.0

Solve this for I3 and substitute in (2) to get



which yields I1 = 3.9 A, which is the ammeter reading. Then Eq.
(1) gives I2 = -2.2 A.

To find the voltmeter reading Vab, write the loop equation for
loop abca:

Vab - 7.0 I1 − = 0

Substituting the known values of I1 and ε, then solving, we obtain
Vab = 4.3 V. Since this is the potential difference between a to b,
point b must be at the higher potential.

29.6 [III]  In the circuit in Fig. 29-5, I1 = 0.20 A and R = 5.0 Ω. Find ε.

We write the loop equation for loop cdefc:

−RI1 + 12.0 − 8.0 − 7.0 I2 = 0     or     −(5.0)(0.20) + 12.0 − 8.0 − 7.0 I2 = 0

from which I2 = 0.43 A. We can now find I3 by applying the node
rule at e:

I1 + I3 = I2     or     I3 = I2 - I1 = 0.23 A

Now apply the loop rule to loop cdeac:

-(5.0)(0.20) + 12.0 + (2.0)(0.23) + ε = 0

from which ε = -11.5 V. The minus sign tells us that the polarity
of the battery is actually the reverse of that shown.

SUPPLEMENTARY PROBLEMS



29.7 [II]  For the circuit shown in Fig. 29-6, find the current in the 0.96-Ω
resistor and the terminal voltages of the batteries.

Fig. 29-6

29.8 [III]   For the network shown in Fig. 29-7, determine (a) the three
currents I1, I2, and I3, and (b) the terminal voltages of the three
batteries.

Fig. 29-7

29.9 [II]   Refer back to Fig. 29-5. If the voltmeter reads 16.0 V (with point-b
at the higher potential) and I2 = 0.20 A, find ε, R, and the ammeter
reading.



29.10 [III] Find I1, I2, I3, and the potential difference between point-b to
point-e in Fig. 29-8.

Fig. 29-8

29.11 [II]  In Fig. 29-9, R = 10.0 Ω and ɛ = 13 V. Find the readings of the
ideal ammeter and voltmeter.

29.12 [II]  In Fig. 29-9, the voltmeter reads 14 V (with point-a at the higher
potential) and the ammeter reads 4.5 A. Find ɛ and R.

Fig. 29-9



ANSWERS TO SUPPLEMENTARY PROBLEMS

29.7 [II]    5.0 A, 4.8 V, 4.8 V

29.8 [III]    (a) I1 = 2 A, I2 = 1 A, I3 = -3 A; (b) V16 = 14 V, V4 = 3.8 V, V10
= 8.5 V

29.9 [II]     14.6 V, 0.21 Ω, 12 A

29.10 [III]    2.0 A, -8.0 A, 6.0 A, -13.0 V

29.11 [II]    8.4 A, 27 V with point-a positive

29.12 [II]    ε = 0, R = 3.2 Ω



Forces in Magnetic Fields

A Magnetic Field ( ) exists in an otherwise empty region of space if a
charge moving through that region can experience a force due to its motion
(as shown in Fig. 30-1). Frequently, a magnetic field is detected by its effect
on a compass needle (a tiny bar magnet). The compass needle lines up in
the direction of the magnetic field.

Fig. 30-1

Magnetic Field Lines drawn in a region correspond to the direction in
which a compass needle placed in that region will point. A method for
determining the field lines near a bar magnet is shown in Fig. 30-2. By
tradition, we take the direction of the compass needle to be the direction of
the field.



Fig. 30-2

A Magnet may have two or more poles, although it must have at least one
north pole and one south pole. Because a compass needle points away from
a north pole (N in Fig. 30-2) and toward a south pole (S), magnetic field
lines exit north poles and enter south poles.

Magnetic Poles of the same type (north or south) repel each other, while
unlike poles attract each other.

A Charge Moving Through a Magnetic Field experiences a force due to
the field, provided its velocity vector is not along a magnetic field line. In
Fig. 30-1, charge (q) is moving with velocity  in a magnetic field directed as
shown. The direction of the force  on each charge is indicated. Notice that
the direction of the force on a negative charge is opposite to that on a
positive charge with the same velocity.

The Direction of the Force acting on a charge +q moving in a magnetic
field can be found from a right-hand rule (Fig. 30-3):

Fig. 30-3

Hold the right hand flat in the plane of  and . Point its fingers in the
direction of the field. Orient the thumb along the direction of the
velocity of the positive charge. Then the palm of the hand pushes in



the direction of the force on the charge. The force direction on a
negative charge is opposite to that on a positive charge.

It is often helpful to note that the field line through the particle and the
velocity vector of the particle determine a plane (the plane of the page in
Fig. 30-3). The force vector is always perpendicular to this plane. An
alternative rule is based on the vector cross product: put the fingers of the
right hand in the direction of  rotate your hand until the fingers can
naturally close toward  through the smallest angle and your thumb then
points in the direction  of (see Fig. 30-4). We say that  is in the
direction of  cross . Notice that again  and  define a plane and  is
perpendicular to that plane.

Fig. 30-4

The Magnitude of the Force (FM) on a charge moving in a magnetic field
depends upon the product of four factors:

(1) q, the charge (in C)
(2) υ, the magnitude of the velocity of the charge (in m/s)
(3) B, the strength of the magnetic field
(4) sin θ, where θ is the angle between the field lines and the velocity 

.

The Magnetic Field at a Point is represented by a vector  that was once
called the magnetic induction, or the magnetic flux density, and is now



simply known as the magnetic field.
Define the magnitude of  and its units by way of the equation

where FM is in newtons, q is in coulombs, υ is in m/s, and B is the magnetic
field in a unit called the tesla (T). For reasons we will see later, a tesla can
also be expressed as a weber per square meter: 1 T = 1 Wb/m2 (see
Chapter 32). Still encountered is the cgs unit for B, the gauss (G), where

1 G = 10−4 T

The Earth’s magnetic field is a few tenths of a gauss. Also note that

Force on a Current in a Magnetic Field: Since a current is simply a
stream of positive charges, a current experiences a force due to a magnetic
field. The direction of the force is found by the right-hand rule shown in Fig.
30-3 or 30-4, with the direction of the current used in place of the velocity
vector.

The magnitude ∆FM of the force on a small length ∆L of wire carrying
current I is given by

where θ is the angle between the direction of the current I and the direction
of the field. For a straight wire of length L completely immersed in a
uniform magnetic field, this becomes

Notice that the force is zero if the wire is in line with the field lines. The
force is maximum if the field lines are perpendicular to the wire. In analogy
to the case of a moving charge, the force is perpendicular to the plane
defined by the wire and the field lines.

Torque on a Flat Coil in a uniform magnetic field: The torque τ on a flat
coil of N loops, each carrying a current I, in an external magnetic field B is



where A is the area of the coil, and θ is the angle between the field lines and
a perpendicular to the plane of the coil. For the direction of rotation of the
coil, we have the following right-hand rule:

Orient the right thumb perpendicular to the plane of the coil, such
that the fingers run in the direction of the current flow. Then the
torque acts to rotate the thumb into alignment with the external field
(at which orientation the torque will be zero).

Fig. 30-5 illustrates the rule. It depicts a coil of four turns perpendicular to
the page, immersed in a uniform -field. In part (a) we see how the current,
I, causes the coil to produce its own dipole field as if it were a small bar
magnet. That imaginary bar magnet “wants” to swing into alignment with
the -field just as a compass needle would.

Fig. 30-5

PROBLEM SOLVING GUIDE

When dealing with moving charges in B-fields, always draw a diagram. If a
coordinate system is involved, it must be right-handed. When computing
forces, watch out for the signs of the charges—an electron has a negative
charge, and that affects the direction of the force. Use the same right-hand
rule for wires carrying currents as for moving positive charge.

SOLVED PROBLEMS



30.1 [I]    A uniform magnetic field, B = 3.0 G, exists in the +x-direction. A
proton (q = +e) shoots through the field in the +y-direction with a
speed of 5.0 × 106 m/s. (a) Find the magnitude and direction of the
force on the proton. (b) Repeat with the proton replaced by an
electron.

(a) The situation is shown in Fig. 30-6. We have, after changing
3.0 G to 3.0 × 10−4 T,

FM = qυB sinθ = (1.6 × 10−19 C)(5.0 × 106 m/s)(3.0 × 10−4 T) sin 90° = 2.4
× 10−16 N

The force is perpendicular to the xy-plane, the plane defined by the
field lines and . The right-hand rule tells us that the force is in the
−z-direction.

Fig. 30-6

(b) The magnitude of the force is the same as in (a), 2.4 × 10−16 N.
But, because the electron is negative, the force direction is
reversed. The force is in the +z-direction.

30.2 [II]  The charge shown in Fig. 30-7 is a proton (q = +e, mp = 1.67 ×
10−27 kg) with speed 5.0 × 106 m/s. It is passing through a uniform
magnetic field directed up out of the page; B is 30 G. Describe the
path followed by the proton.



Fig. 30-7

Because the proton’s velocity is perpendicular to , the force on
the proton is

qυB sin 90° = qυB

This force is perpendicular to , and so it does no work on the
proton. It simply deflects the proton and causes it to follow the
circular path shown, as you can verify using the right-hand rule.
The force qυB is radially inward and supplies the centripetal force
for the circular motion: FM = qυB = ma = mυ2/r and

For the given data,

Observe from Eq. (1) that the momentum of the charged particle is
directly proportional to the radius of its circular orbit.

30.3 [I]    A proton enters a magnetic field of flux density 1.5 Wb/m2 with a
velocity of 2.0 × 107 m/s at an angle of 30° with the field.
Compute the magnitude of the force on the proton.



FM = qυB sin θ = (1.6 × 10−19 C)(2.0 × 107 m/s)(1.5 Wb/m2) sin 30° = 2.4 ×
10−12 N

30.4 [I]    A cathode ray beam (i.e., an electron beam; me = 9.1 × 10−31 kg, q
= −e) is bent in a circle of radius 2.0 cm by a uniform field with B
= 4.5 × 10−3 T. What is the speed of the electrons?

To describe a circle like this, the particles must be moving
perpendicular to  From Eq. (1) of Problem 30.2,

30.5 [II]  As shown in Fig. 30-8, a particle of charge q enters a region where
an electric field is uniform and directed downward. Its value E is
80 kV/m. Perpendicular to  and directed into the page is a
magnetic field B = 0.4 T. If the speed of the particle is properly
chosen, the particle will not be deflected by these crossed electric
and magnetic fields. What speed should be selected in this case?
(This device is called a velocity selector.)

Fig. 30-8

The electric field causes a downward force Eq on the charge if it is
positive. The right-hand rule tells us that the magnetic force, qυB
sin 90°, is upward if q is positive. If these two forces are to
balance so that the particle does not deflect, then



When q is negative, both forces are reversed, so the result υ = E/B
still holds.

30.6 [III]  In Fig. 30-9(a), a proton (q = +e, mp = 1.67 × 10−27 kg) is shot
with a speed of 8.0 × 106 m/s at an angle of 30.0° to an x-directed
field B = 0.15 T. Describe the path followed by the proton.

Fig. 30-9

Resolve the particle velocity into components parallel to and
perpendicular to the magnetic field. The magnetic force in the
direction of υ║ is zero (sin θ = 0); the magnetic force in the
direction of υ⊥ has no x-component. Therefore, the motion in the
x-direction is uniform, at speed

υ║ = (0.866)(8.0 × 106 m/s) = 6.93 × 106 m/s

while the transverse motion is circular (see Problem 30.2), with
radius

The proton will spiral along the x-axis; the radius of the spiral (or
helix) will be 28 cm.

To find the pitch of the helix (the x-distance traveled during one
revolution), note that the time taken to complete one circle is



During that time, the proton will travel an x-distance of

Pitch = (υ║)(period) = (6.93 × 106 m/s)(4.4 × 10−7 s) = 3.0 m

30.7 [II]  Alpha particles (mα = 6.68 × 10−27 kg, q = +2e) are accelerated
from rest through a p.d. of 1.0 kV. They then enter a magnetic
field B = 0.20 T perpendicular to their direction of motion.
Calculate the radius of their path.

Their final KE is equal to the electric potential energy they lose
during acceleration, Vq:

From Problem 30.2, they follow a circular path in which

30.8 [I]    In Fig. 30-10, the magnetic field is up out of the page and B = 0.80
T. The wire shown carries a current of 30 A. Find the magnitude
and direction of the force on a 5.0 cm length of the wire.

Fig. 30-10



We know that

∆FM = I(∆L)B sin θ = (30 A)(0.050 m)(0.80 T)(1) = 1.2 N

By the right-hand rule, the force is perpendicular to both the wire
and the field and is directed toward the bottom of the page.

30.9 [I]   As shown in Fig. 30-11, a loop of wire carries a current I and its
plane is perpendicular to a uniform magnetic field . What are the
resultant force and torque on the loop?

Fig. 30-11

Consider the length ∆L shown. The force ∆  on it has the
direction indicated. A point directly opposite this on the loop has
an equal, but opposite, force acting on it. Hence, the forces on the
loop cancel and the resultant force on it is zero.

We see from the figure that the ∆ ’s acting on the loop are trying
to expand it, not rotate it. Therefore, the torque (τ) on the loop is
zero. Or, making use of the torque equation,

τ = NIAB sin θ

where θ is the angle between the field lines and the perpendicular
to the plane of the loop. That angle is zero. Therefore, sin 0 = 0
and the torque is zero.

30.10 [I]  The 40-loop coil shown in Fig. 30-12 carries a current of 2.0 A in a
magnetic field B = 0.25 T. Find the torque on it. How will it
rotate?



Fig. 30-12

Method 1
The coil is composed of 40 turns of wire. Therefore, N = 40 and

τ = NIAB sin θ = (40)(2.0 A)(0.10 m × 0.12 m)(0.25 T)(sin 90°) = 0.24 N ·
m

(Remember that θ is the angle between the field lines and the
perpendicular to the loop.) By the right-hand rule, the coil will
turn about a vertical axis in such a way that side ad moves up out
of the page and side bc moves down into the page.

Method 2
Because sides dc and ab are in line with the field, the force on
each of them is zero, while the force on each vertical wire is

FM = ILB = (2.0 A)(0.12 m)(0.25 T) = 0.060 N

out of the page on side ad and into the page on side bc. If we take
torques about side bc as axis, only the force on side ad gives a
nonzero torque. It is

τ = (40 × 0.060 N)(0.10 m) = 0.24 N · m

and it tends to rotate side ad up out of the page.

30.11 [I]  In Fig. 30-13 is shown only one-quarter of a single complete
circular loop of wire that carries a current of 14 A. Its radius is a =



5.0 cm. A uniform magnetic field, B = 300 G, is directed in the +x-
direction. Find the torque on the loop and the direction in which it
will rotate.

Fig. 30-13

The normal to the loop, OP, makes an angle θ = 60° with the +x-
direction, the field direction. Hence,

τ = NIAB sin θ = (1)(14 A)(π × 25 × 10−4 m2)(0.030 0 T) sin 60° = 2.9 ×
10−3 N · m

The right-hand rule shows that the loop will rotate about the y-axis
so as to decrease the angle labeled 60°.

30.12 [II] Two electrons, both with speed 5.0 × 106 m/s, are shot into a
uniform magnetic field . The first is shot from the origin out
along the +x-axis, and it moves in a circle that intersects the +z-
axis at z = 16 cm. The second is shot out along the +y-axis, and it
moves in a straight line. Find the magnitude and direction of .

The situation is shown in Fig. 30-14. Because a charge
experiences no force when moving along a field line, the field
must be in either the +y- or −y-direction. Use of the right-hand
rule for the motion shown in the diagram for the negative electron
charge leads us to conclude that the field is in the −y-direction.



Fig. 30-14

To find the magnitude of , we notice that r = 8 cm. The
magnetic force Bqυ provides the needed centripetal force mυ2/r,
and so

30.13 [I]  At a certain place on the planet, the Earth’s magnetic field is 5.0 ×
10−5 T, directed 40° below the horizontal. Find the force per meter
of length on a horizontal wire that carries a current of 30 A
northward.

Nearly everywhere, the Earth’s field is directed northward. (That
is the direction in which a compass needle points.) Therefore, the
situation is that shown in Fig. 30-15. The force on the wire is

The right-hand rule indicates that the force is into the page, which
is west.



Fig. 30-15

SUPPLEMENTARY PROBLEMS

30.14 [I]  A proton travels at 100 m/s in and parallel to a 2.00-T magnetic
field. What is the magnitude of the force on the proton?

30.15 [I]  A proton travels at 100 m/s in and perpendicular to a 2.00-T
magnetic field. What is the magnitude of the force on the proton?

30.16 [I]  A minute conducting sphere carrying 4.0 × 109 electrons travels at
500 m/s in and perpendicular to a 1.50-T magnetic field. What is
the magnitude of the force on the sphere?

30.17 [I]  An ion (q = +2e) enters a magnetic field of 1.2 Wb/m2 at a speed of
2.5 × 105 m/s perpendicular to the field. Determine the force on
the ion.

30.18 [I]  A proton is traveling at 200 m/s in the positive x-direction. There is
a 2.00-T magnetic field in the positive y-direction. Determine the
force on the proton.

30.19 [I]  A proton is traveling at 200 m/s in the negative x-direction. There
is a 2.00-T magnetic field in the negative y-direction. Determine
the force on the proton.

30.20 [I]  A proton is traveling at 400 m/s in the negative z-direction. There is
a 1.50-T magnetic field in the negative y-direction. Determine the
force on the proton.



30.21 [I]  An electron is traveling at 4.00 km/s in the negative y-direction.
There is a 1.50-T magnetic field in the positive z-direction.
Determine the force on the particle.

30.22 [II]  Calculate the speed of ions that pass undeflected through crossed
E and B fields for which E = 7.7 kV/m and B = 0.14 T.

30.23 [I]  The particle shown in Fig. 30-16 is positively charged in all three
cases. What is the direction of the force on it due to the magnetic
field? Give its magnitude in terms of B, q, and υ.

Fig. 30-16

30.24 [II]  What might be the mass of a positive ion that is moving at 1.0 ×
107 m/s and is bent into a circular path of radius 1.55 m by a
magnetic field of 0.134 Wb/m2? (There are several possible
answers.)

30.25 [II]  An electron is accelerated from rest through a potential
difference of 3750 V. It enters a region where B = 4.0 × 10−3 T
perpendicular to its velocity. Calculate the radius of the path it
will follow.

30.26 [II]  An electron is shot with speed 5.0 × 106 m/s out from the origin
of coordinates. Its initial velocity makes an angle of 20° to the
+x-axis. Describe its motion if a magnetic field B = 2.0 mT exists
in the +x-direction.

30.27 [II]  A beam of electrons passes undeflected through two mutually
perpendicular electric and magnetic fields. If the electric field is
cut off and the same magnetic field maintained, the electrons
move in the magnetic field in a circular path of radius 1.14 cm.
Determine the ratio of the electronic charge to the electron mass



if E = 8.00 kV/m and the magnetic field has flux density 2.00
mT.

30.28 [I]  Imagine a length of straight wire 40.0 cm long in a horizontal
plane. The wire carries a current of 2.00 A in the +x-direction.
There is a 2.50-T magnetic field surrounding the wire and pointing
in the positive z-direction perpendicular to the horizontal plane.
Determine the force, if any, on the wire.

30.29 [I]  A 100-cm-long piece of straight wire is aligned along the y-axis.
The wire carries a current of 5.00 A in the +y-direction. There is a
2.00-T magnetic field in the negative z-direction surrounding the
wire. Determine the force, if any, on the wire.

30.30 [I]  A 300-cm-long piece of straight wire is aligned vertically along the
z-axis. The wire carries a downward current of 6.00 A. There is a
2.00-T magnetic field in the negative x-direction surrounding the
wire. Determine the force, if any, on the wire.

30.31 [I]  A straight wire 15 cm long, carrying a current of 6.0 A, is in a
uniform field of 0.40 T. What is the force on the wire when it is
(a) at right angles to the field and (b) at 30° to the field?

30.32 [I]  What is the direction of the force at the equator, due to the Earth’s
magnetic field, on a wire carrying current vertically downward?

30.33 [I]  Find the force on each segment of the wire shown in Fig. 30-17 if B
= 0.15 T. Assume the current in the wire to be 5.0 A.

Fig. 30-17

30.34 [II]  A flat rectangular coil of 25 loops is suspended in a uniform



magnetic field of 0.20 Wb/m2. The plane of the coil is parallel to
the direction of the field. The dimensions of the coil are 15 cm
perpendicular to the field lines and 12 cm parallel to them. What
is the current in the coil if there is a torque of 5.4 N · m acting on
it?

30.35 [II]  An electron is accelerated from rest through a potential
difference of 800 V. It then moves perpendicularly to a magnetic
field of 30 G. Find the radius of its orbit and its orbital frequency.

30.36 [II]  A proton and a deuteron (md ≈ 2mp, qd = e) are both accelerated
through the same potential difference and enter a magnetic field
along the same line. If the proton follows a path of radius Rp,
what will be the radius of the deuteron’s path?

ANSWERS TO SUPPLEMENTARY PROBLEMS

30.14 [I]    no force

30.15 [I]    3.20 × 10–17 N

30.16 [I]    4.8 × 10–7 N

30.17 [I]    9.6 × 10−14 N

30.18 [I]    6.41 × 10–17 N in +z-direction

30.19 [I]    6.41 × 10–17 N in +z-direction

30.20 [I]    9.61 × 10–17 N in −x-direction

30.21 [I]    9.61 × 10–17 N in +x-direction

30.22 [II]    55 km/s



30.23 [I]    (a) into the page, qυB; (b) out of the page, qυB sin θ; (c) in the
plane of the page at angle θ + 90°, qυB

30.24 [II]    n(3.3 × 10−27 kg), where ne is the ion’s charge

30.25 [II]    5.2 cm

30.26 [II]    helix, r = 0.49 cm, pitch = 8.5 cm

30.27 [II]    e/me = 175 GC/kg where that G is not gauss

30.28 [I]    2.0 N in −y-direction

30.29 [I]    10.0 N in −x-direction

30.30 [I]    36.0 N in +y-direction

30.31 [I]    (a) 0.36 N; (b) 0.18 N

30.32 [I]    horizontally toward east

30.33 [I]    In sections AB and DE, the force is zero; in section BC, 0.12 N
into page; in section CD, 0.12 N out of page

30.34 [II]    60 A

30.35 [II]    3.2 cm, 84 MHz

30.36 [II]    



Sources of Magnetic Fields

Magnetic Fields Are Produced by moving charges, and of course that
includes electric currents. Figure 31-1 shows the nature of the magnetic
fields produced by several current configurations. Below each is given the
value of B at the indicated point-P. The constant μ0 = 4π × 10-7 T · m/A is
called the permeability of free , space. It is assumed that the surrounding
material is either vacuum or air. When a magnetic material occupies the
space within a coil, such as the ones in Fig. 31-1(c) and (d), it can enhance
the field appreciably. Then we simply substitute the measured value of the
permeability of the material (μ) for that of vacuum (μ0) in the appropriate
equations.



Fig. 31-1

The Direction of the Magnetic Field of a current-carrying wire can be
found by using a right-hand rule, as illustrated in Fig. 31-1(a):

Grasp the wire in the right hand, with the thumb pointing in the
direction of the current. The fingers then circle the wire in the same
direction as the magnetic field does.

This same rule can be used to find the direction of the field for a
current loop such as that shown in Fig. 31-1(b).

The B-field in a solenoid such as in Fig. 31-1(c) can be determined by
curling the fingers of the right hand around the coil in the direction of
the current; the outstretched thumb then points in the direction of the
field.

Ferromagnetic Materials, primarily iron and the other transition elements,
greatly enhance magnetic fields. Other materials influence B-fields only
slightly. The ferromagnetic materials contain domains, or regions of aligned
atoms, that act as tiny bar magnets. When the domains within an object are
aligned with each other, the object becomes a magnet. The alignment of
domains in permanent magnets is not easily disrupted.

The Magnetic Moment of a flat current-carrying loop (current = I, area =
A) is IA. The magnetic moment is a vector quantity that points along the
field line perpendicular to the plane of the loop. In terms of the magnetic
moment, the torque on a flat coil with N loops in a magnetic field B is τ =
N(IA)Bsinθ, where θ is the angle between the field and the magnetic
moment vector.

Magnetic Field of a Current Element: The current element of length ∆L
shown in Fig. 31-2 contributes ∆  to the field at P. The magnitude of ∆  is
given by the Biot-Savart Law:



Fig. 31-2

where r and θ are defined in the figure. The direction of ∆  is perpendicular
to the plane determined by ∆L and r (the plane of the page). In the case
shown, the right-hand rule tells us that ∆  is out of the page.

When r is in line with ∆L, then θ = 0 and thus ∆B = 0. This means that
the field due to a straight wire at a point on the line of the wire is zero.

PROBLEM SOLVING GUIDE

The material in this chapter is pretty straightforward. There are a handful of
equations that you will be using. Be careful with units and check your work.
The rest should be easy. Make sure you understand and remember the right-
hand-rules for finding the direction of the B-field due to a current in both a
wire and a coil. For a solenoid the B-field emerges at the north-pole end and
reenters the coil at the south-pole end. Keep in mind, when calculating the
field of a solenoid, that it depends on n, the number of turns per meter.

SOLVED PROBLEMS

31.1 [I]    Compute the value of B in air at a point 5 cm from a long straight
wire carrying a current of 15 A.

From Fig. 31-1(a),



31.2 [I]    A flat circular coil with 40 loops of wire has a diameter of 32 cm.
What current must flow in its wires to produce a field in air of 3.0
× 10-4 Wb/m2 at its center?

From Fig. 31-1(b),

Which gives I = 1.9 A.

31.3 [I]    An air-core solenoid with 2000 loops is 60 cm long and has a
diameter of 2.0 cm. If a current of 5.0 A is sent through it, what
will be the flux density within it?

From Fig. 31-3(c),

31.4 [I]    In Bohr’s model of the hydrogen atom, the electron travels with
speed 2.2 × 106 m/s in a circle (r = 5.3 × 10-11 m) about the
nucleus. Find the value of B at the nucleus due to the electron’s
motion. Assume vacuum.

In Problem 26.17 we found that the orbiting electron corresponds
to a current loop with I = 1.06 mA. The field at the center of the
current loop is

31.5 [II]    A long straight wire coincides with the x-axis, and another
coincides with the y-axis. Each carries a current of 5 A in the
positive coordinate direction. (See Fig. 31-3.) Where is their
combined field equal to zero?



Fig. 31-3

Use of the right-hand rule should convince you that their fields
tend to cancel in the first and third quadrants. A line at θ = 45°
passing through the origin is equidistant from the two wires in
these quadrants. Hence, the fields exactly cancel along the line x
= y, the 45° line.

31.6 [II]  A long wire carries a current of 20 A along the axis of a long
solenoid in air. The field due to the solenoid is 4.0 mT. Find the
resultant field at a point 3.0 mm from the solenoid axis.

The situation is shown in Fig. 31-4. The field of the solenoid, , is
directed parallel to the wire. The field of the long straight wire, 
, circles the wire and is perpendicular to  We have Bs = 4.0 mT
and

Since  and  are perpendicular, their resultant  has magnitude



Fig. 31-4

31.7 [II]  As shown in Fig. 31-5, two long parallel wires are 10 cm apart in
air and carry currents of 6.0 A and 4.0 A. Find the force on a 1.0-
m length of wire D if the currents are (a) parallel and (b)
antiparallel.

Fig. 31-5

(a) This is the situation shown in Fig. 31-5. The field at wire D
due to wire C is directed into the page and has the value

The force on 1 m of wire D due to this field is

FM = ILB sinθ = (4.0 A)(1.0 m)(1.2 × 10-5 T)(sin 90°) = 48 µN

The right-hand rule applied to wire D tells us the force on D is
toward the left. The wires attract each other.
(b) If the current in D flows in the reverse direction, the force

direction will be reversed. The wires will repel each other. The



force per meter of length is still 48 µN.

31.8 [III]  Consider the three long, straight, parallel wires in air shown in
Fig. 31-6. Find the force experienced by a 25-cm length of wire
C.

Fig. 31-6

The fields due to wires D and G at wire C are

into the page at wire C, and

out of the page. Therefore, the field at the position of wire C is

B = 2.0 × 10-4 - 0.80 × 10-4 = 1.2 × 10-4 T

into the page at wire C. The force on a 25-cm length of C is

FM = ILB sinθ = (10 A)(0.25m)(1.2 × 10-4 T)(sin 90°) = 0.30 mN

Using the right-hand rule at wire C tells us that the force on wire
C is toward the right.

31.9 [III]   A flat circular coil having 10 loops of wire has a diameter of 2.0
cm and carries a current of 0.50 A. It is mounted inside a long



solenoid immersed in air, that has 200 loops on its 25-cm length. The
current in the solenoid is 2.4 A. Compute the torque required to hold
the coil with its central axis perpendicular to that of the solenoid.

Let the subscripts s and c refer to the solenoid and coil,
respectively. Then

31.10 [III] The wire shown in Fig. 31-7 carries a current of 40 A. Find the
field at point-P.

Fig. 31-7

Since P lies on the lines of the straight wires, those wires
contribute no field at P. A circular loop of radius r gives a field
of B = μ0I/2r at its center point. Here we have only three-fourths
of a loop, and so we can assume that

The field is out of the page.



SUPPLEMENTARY PROBLEMS

31.11 [I]  Compute the magnitude of the magnetic field in air at a point 6.0
cm from a long straight wire carrying a current of 9.0 A.

31.12 [I]  If the B-field 1.00 cm from a straight wire in air is 2.00 mT, how
much current flows in the wire?

31.13 [I]  If the B-field at a point P some distance from a straight wire in air
is 20.0 μT and a current of 20.0 A flows in the wire, determine the
perpendicular distance from the wire to point P.

31.14 [I]  A cable in air consists of three closely confined straight wires
carrying currents of 10.0 A, 30.0 A due east, and 15.0 A due west.
Determine the magnetic field 100 cm to the north of the wires.

31.15 [I]  A closely wound, flat, circular coil of 25 turns of wire has a
diameter of 10 cm and carries a current of 4.0 A. Determine the
value of B at its center when immersed in air.

31.16 [I]  One hundred turns of insulated wire are tightly wrapped around a
cardboard ring-shaped core, thereby forming an essentially flat
coil (of negligible length) with a diameter of 20.0 cm. What
current in the coil will produce a B-field in air at its center of 200
μT?

31.17 [I]  We wish to make an essentially flat, ring-shaped, tightly wound
coil (of negligible length) with a diameter of 20.0 cm that will
produce a B-field in air at its center of 9.42 μT. If we can provide
0.500 A, how many turns of wire will we need?

31.18 [I]  An air-core solenoid has 10 000 turns per meter and carries a
current of 0.80 A. What is the value of the B-field at its center?

31.19 [I]  An air-core solenoid 50 cm long has 4000 turns of wire wound on
it. Compute B in its interior when a current of 0.25 A exists in the
winding.



31.20 [I]  Determine the approximate B-field at the ends of an air-core
solenoid that has 20 000 turns per meter and carries a current of
1.60 A.

31.21 [I]  An air-core solenoid has 10 000 turns per meter and carries a
current of 1.60 A. What is the approximate value of the B-field at
its ends?

31.22 [I]  An air solenoid has 10 000 turns per meter and carries a current of
1.60 A. What is the approximate value of the B-field at its ends
when the core of the solenoid has a permeability of μ = 50μ0?

31.23 [I]  A uniformly wound air-core toroid has 750 loops on it. The radius
of the circle through the center of its windings is 5 cm. What
current in the winding will produce a field of 1.8 mT on this
central circle?

31.24 [II]  Two long parallel wires in vacuum are 4 cm apart and carry
currents of 2 A and 6 A in the same direction. Compute the force
between the wires per meter of wire length.

31.25 [II]  Two long fixed parallel wires, A and B, are 10 cm apart in air and
carry 40 A and 20 A, respectively, in opposite directions.
Determine the resultant field (a) on a line midway between the
wires and parallel to them and (b) on a line 8.0 cm from wire A
and 18 cm from wire B. (c) What is the force per meter on a third
long wire, midway between A and B and in their plane, when it
carries a current of 5.0 A in the same direction as the current in
A?

31.26 [II]  The long straight wires in Fig. 31-3 both carry a current of 12 A,
in the directions shown. Find B at the points (a) x = -5.0 cm, y =
5.0 cm, and (b) x = -7.0 cm, y = -6.0 cm in air.

31.27 [II]  A certain electromagnet consists of a solenoid (5.0 cm long with
200 turns of wire) wound on a soft-iron core that intensifies the
field 130 times. (We say that the relative permeability of the iron
is 130.) Find B within the iron when the current in the solenoid is



0.30 A.

31.28 [III]  A particular solenoid (50 cm long with 2000 turns of wire)
carries a current of 0.70 A and is in vacuum. An electron is shot at
an angle of 10° to the solenoid axis from a point on the axis. (a)
What must be the speed of the electron if it is to just miss hitting
the inside of the 1.6-cm-diameter solenoid? (b) What is then the
pitch of the electron’s helical path?

ANSWERS TO SUPPLEMENTARY PROBLEMS

31.11 [I]    30 µT

31.12 [I]    100 A

31.13 [I]    20.0 cm

31.14 [I]    5.00 µT

31.15 [I]    1.3 × 10-3 Wb/m2

31.16 [I]    318 mA

31.17 [I]    3

31.18 [I]    0.010 T

31.19 [I]    2.5 mT

31.20 [I]    0.020 T

31.21 [I]    0.010 T

31.22 [I]    0.50 T

31.23 [I]    0.6 A



31.24 [II]    6 × 10-5 N/m, attraction

31.25 [II]  (a) 2.4 × 10-4 T; (b) 7.8 × 10-5 T; (c) 1.2 × 10-3 N/m, toward A

31.26 [II]    (a) 96 µT, out; (b) 5.7 µT, in

31.27 [II]    0.20 T

31.28 [III]  (a) 1.4 × 107 m/s; (b) 14 cm



Induced EMF; Magnetic Flux

Magnetic Effects of Matter: Most materials have only a slight effect on a
steady magnetic field. To explore that phenomenon further, suppose that a
very long solenoid is located in vacuum. Suppose that with a fixed current in
the coil, the magnetic field at a point inside the solenoid is B0, where the
subscript 0 stands for vacuum. If now the solenoid core is filled with a
material, the field at that point will be changed to a new value B. We define:

Recall that μ0 is the permeability of free space, 4π × 10-7 T · m/A.
Diamagnetic materials have values of kM slightly below unity (e.g.,

0.999 984 for solid lead). They slightly decrease the value of B in the
solenoid.

Paramagnetic materials have values for kM slightly larger than unity
(e.g., 1.000 021 for solid aluminum). They slightly increase the value of B in
the solenoid.

Ferromagnetic materials, such as iron and its alloys, have kM values of
about 50 or larger. They greatly increase the value of B in the solenoid.

Magnetic Field Lines: A magnetic field may be represented pictorially
using lines, to which  is everywhere tangential. These magnetic field lines
are constructed in such a way that the number of lines piercing a unit area
perpendicular to them is proportional to the local value of B.



The Magnetic Flux (ΦM) through an area A is defined to be the product of 
 and A where  is the component of  perpendicular to the surface of area

A:

Here θ is the angle between the direction of the magnetic field and the
perpendicular to the area. The flux is expressed in webers (Wb).

An Induced Emf exists in a loop of wire whenever there is a change in the
magnetic flux passing through the area surrounded by the loop. The induced
emf exists only during the time that the flux through the area is changing,
either increasing or decreasing.

Faraday’s Law for Induced Emf: Suppose that a coil with N loops or turns
is subject to a changing magnetic flux passing through the coil. If a change
in flux ΔΦM occurs in a time Δt, then the average emf induced between the
two terminals of the coil is given by

The emf ε is measured in volts if ΔΦM/Δt is in Wb / s. The minus sign
indicates that the induced emf opposes the change which produces it, as
stated generally in Lenz’s Law.

Lenz’s Law: An induced emf always has such a direction as to oppose the
change in magnetic flux that produced it. For example, if the flux is
increasing through a coil, the current produced by the induced emf will
generate a flux that tends to cancel the increasing flux (though it generally
does not succeed at doing it completely). Or, if the flux is decreasing
through the coil, that current will produce a flux that tends to restore the
decreasing flux (though it generally does not succeed at doing it
completely). Lenz’s Law is a consequence of Conservation of Energy. If
this were not the case, the induced currents would enhance the flux change
that caused them to begin with and the process would build endlessly.

Motional Emf: When a conductor moves through a magnetic field so as to
cut field lines, an induced emf will exist in it, in accordance with Faraday’s



Law. In this case,

The symbol |ε| means that we are concerned here only with the magnitude of
the average induced emf; its direction will be considered below.

The induced emf in a straight conductor of length L moving with velocity
 perpendicular to a field  is given by

where , , and the wire must be mutually perpendicular.
In this case, Lenz’s Law still tells us that the induced emf opposes that

which causes it. But now the opposition is produced by way of the force
exerted by the magnetic field on the induced current in the conductor. The
current direction must be such that the force opposes the motion of the
conductor (though it generally does not completely cancel it). Knowing the
current direction, we also know the direction of ε.

PROBLEM SOLVING GUIDE

A flux change causes an induced emf, and flux can change [via Eq. (32.3)]
by changing B or A. Suppose there is a B-field passing through the area of a
coil like that in Fig. 32-6. Ask and answer the following questions: (1) What
is the direction of the applied field B? (Here it happens to be shown pointing
upward.) (2) Is the applied field increasing or decreasing? Suppose the
problem tells you it’s increasing. (3) What then must be the direction of the
induced field Bi? It must oppose, not the applied B-field, but the change in
that field, the increase; here it must be down. (4) What must be the direction
of the induced current Ii that gives rise to Bi? The right-hand rule tells us
that here current flows inside the coil from point B to point A. That means
that if a resistor were placed across the coil, current would flow through it
from A to B and therefore VA > VB.

SOLVED PROBLEMS



32.1 [II]    A solenoid is 40 cm long, has a cross-sectional area of 8.0 cm2,
and is wound with 300 turns of wire that carry a current of 1.2 A.
The relative permeability of its iron core is 600. Compute 
(a) B for an interior point and (b) the flux through the solenoid.

(a) From Fig. 31-1(c), in air

(b) Because the field lines are perpendicular to the cross section of
the solenoid,

32.2 [I]    The flux through a current-carrying toroidal coil changes from 0.65
mWb to 0.91 mWb when the air core is replaced by another
material. What are the relative permeability and the permeability
of the material?

The air core is essentially the same as a vacuum core. Since KM =
B/B0 and ΦM =  A,

This is the relative permeability. The magnetic permeability is

32.3 [I]    The quarter-circle loop shown in Fig. 32-1 has an area of 15 cm2. A
constant magnetic field, B = 0.16 T, pointing in the +x-direction,
fills the space independent of the loop. Find the flux through the
loop in each orientation shown.



Fig. 32-1

The magnetic flux is determined by the amount of -field passing
perpendicularly through the particular area, times that area. That
is, ΦM =  A.

32.4 [II]  A hemispherical surface of radius R is placed in a uniform magnetic
field  as shown in Fig. 32-2. What is the magnetic flux through
the hemispherical surface?

Fig. 32-2

The same number of field lines pass through the curved surface as
through the shaded flat circular 
cross-section. Therefore,

Flux through curved surface = Flux through flat surface =  A

where in this case  = B and A = π R2. Then ΦM = πBR2.

32.5 [I]    A 50-loop circular coil has a radius of 3.0 cm. It is oriented so that
the field lines of a magnetic field are normal to the area of the coil.
Suppose that the magnetic field is varied so that B increases from
0.10 T to 0.35 T in a time of 2.0 milliseconds. Find the average



induced emf in the coil. (Study Problem 32.11 after this one.)

32.6 [II]  The cylindrical permanent magnet in the center of Fig. 32-3 induces
an emf in the coils as the magnet moves toward the right or the
left. Find the directions of the induced currents through both
resistors when the magnet is moving (a) toward the right and (b)
toward the left. In each case discuss the voltage across the resistor:

Fig. 32-3

(a) Consider first the coil on the left. As the magnet moves to the
right, the flux through that coil, which is directed more or less
to the left, decreases. To compensate for this, the induced
current in the coil on the left will flow so as to produce a flux
toward the left through itself. Apply the right-hand rule to the
loop on the left end. For it to produce flux inside the coil
toward the left, the current must flow directly through the
resistor from B to A. The voltage at B is higher than at A.

     Now consider the coil on the right. As the magnet moves
toward the right, the flux inside that coil on the right, which is
more or less directed to the left, increases. The induced current
in the coil will produce a flux toward the right to cancel this
increased flux. Applying the right-hand rule to the loop on the
right end, we find that the loop generates flux to the right inside
itself if the current flows from D to C directly through the
resistor. The voltage at D is higher than at C.

(b) In this case the flux change caused by the magnet’s motion
toward the left is opposite to what it was in (a). Using the same
type of reasoning, we find that the induced currents flow
through the resistors directly from A to B and from C to D. The



voltage at A is higher than at B, and it’s higher at C than at D.

32.7 [III]   In Fig. 32-4(a) there is a uniform magnetic field in the +x-
direction, with a value of B = 0.20 T. The circular loop of wire is in
the yz-plane. The loop has an area of 5.0 cm2 and rotates about line
CD as axis. Point-A rotates toward positive x-values from the position
shown. If the loop rotates through 50° from its indicated position, as
shown in Fig. 32-4(b), in a time of 0.20 s, (a) what is the change in
flux through the coil, (b) what is the average induced emf in it, and (c)
does the induced current flow directly from A to C or C to A in the
upper part of the coil?

Fig. 32-4

(c) The flux through the loop from left to right decreased. The
induced current will tend to set up flux from left to right
through the loop. By the right-hand rule, the current flows
directly from A to C. Alternatively, a torque must be set up that
tends to rotate the loop back into its original position. The
appropriate right-hand rule from Chapter 30 again gives a
current flow directly from A to C.

32.8 [I]    A coil having 50 turns of wire is removed in 0.020 s from between
the poles of a magnet, where its area intercepted a flux of 3.1 × 10-

4 Wb, to a place where the intercepted flux is 0.10 × 10-4.
Determine the average emf induced in the coil.



32.9 [I]    A copper bar 30 cm long is perpendicular to a uniform magnetic
field of 0.80 Wb/m2 and moves at right angles to the field with a
speed of 0.50 m/s. Determine the emf induced in the bar.

|ε| = BLν = (0.80 Wb/m2)(0.30 m)(0.50 m/s)= 0.12 V

32.10 [II]  As shown in Fig. 32-5, a metal rod makes contact with two
parallel wires and completes the circuit. The circuit is
perpendicular to a magnetic field with B = 0.15 T. If the
resistance is 3.0 Ω, how large a force is needed to move the rod to
the right with a constant speed of 2.0 m/s? At what rate is energy
dissipated in the resistor?

Fig. 32-5

As the wire moves, the downward flux through the loop increases.
Accordingly, the induced emf in the rod causes a current to flow
counterclockwise in the circuit so as to produce an upward
induced -field in the loop that opposes the downward flux
increase. Because of this current in the rod, it experiences a force
to the left due to the magnetic field. To pull the rod to the right
with a constant speed, this force must be balanced.

Method 1



The emf induced in the rod is

|ε| = BLν = (0.15 T)(0.50 m)(2.0 m/s)= 0.15 V

Method 2

The emf induced in the loop is

as before. Now proceed as in Method 1.

To find the power loss in the resistor, we can use

32.11 [II]  A horizontal circular flat coil having three turns and an area of
2.4 m2 is illustrated in Fig. 32-6. It is in a uniform vertical
increasing magnetic field that goes from 1.0 T to 2.4 T in 20
milliseconds. (a) What voltage will appear across terminals A and
B? (b) From the perspective of looking down on the coil, the wire
winds clockwise from B to A. What is the direction of the
induced B-field? (c) What is the direction of the induced current?
(d) Which has the higher potential, A or B?



Fig. 32-6

(a) The emf is given by Faraday’s Law,

That’s the induced voltage in each turn, and so the total emf is

|ε| = 3(168V) = 504V = 0.50 kV

(b) The induced B-field must oppose an upwardly increasing field
and therefore must be downward.

(c) To produce a downward induced B-field inside the coil, current
must flow clockwise looking down; that is, from terminal-B to
terminal-A.

(d) To determine which terminal is at a higher potential, imagine a
resistor across A and B, and label the side where current enters
+ and leaves -. In that external circuit, current flows from A to
B, and hence, VA > VB.



32.12 [III] The metal bar of length L, mass m, and resistance R depicted in
Fig. 32-7(a) slides without friction on a rectangular circuit composed
of resistanceless wire resting on an inclined plane. There is a vertical
uniform magnetic field . Find the terminal speed of the bar (that is,
the constant speed it attains).

Fig. 32-7

Gravity pulls the bar down the incline as shown in Fig. 32-7(b).
Induced current flowing in the bar interacts with the field so as to
retard this motion.

Because of the motion of the bar in the magnetic field, an emf is
induced in the bar:

This causes a current

in the loop. A wire carrying a current in a magnetic field
experiences a force that is perpendicular to the plane defined by
the wire and the magnetic field lines. The bar thus experiences a
horizontal force  (perpendicular to the plane of  and the bar)
given by



and shown in Fig. 32-7(c). However, we want the force
component along the plane, which is

When the bar reaches its terminal velocity, this force equals the
gravitational force down the plane. Therefore,

from which the terminal speed is

Can you show that this answer is reasonable in the limiting cases θ
= 0, B = 0, and θ = 90°, and for R very large or very small?

32.13 [III] The rod shown in Fig. 32-8 rotates about point-C as pivot with a
constant frequency of 5.0 rev/s. Find the potential difference between
its two ends, which are 80 cm apart, due to the magnetic field B =
0.30 T directed into the page.

Fig. 32-8

Consider an imaginary loop CADC. As time goes on, its area and



the flux through it will both increase. The induced emf in this loop
will equal the potential difference we seek.

It takes one-fifth second for the area to change from zero to that of
a full circle, πr2. Therefore,

32.14 [III] A 5.0-Ω coil, of 100 turns and diameter 6.0 cm, is placed
between the poles of a magnet so that the magnetic flux is
maximum through the coil’s cross-sectional area. When the coil
is suddenly removed from the field of the magnet, a charge of 1.0
× 10-4 C flows through a 595-Ω galvanometer connected to the
coil. Compute B between the poles of the magnet.

As the coil is removed, the flux changes from BA, where A is the
coil’s cross-sectional area, to zero. Therefore,

We are told that Δq = 1.0 × 10-4 C. But, by Ohm’s Law,

where R = 600 Ω is the total resistance. If we now equate these
two expressions for |ε| and solve for B, we find

Supplementary Problems



32.15 [I]    Figure 32-9(a) depicts a two-turn horizontal coil in a uniform
downward B-field. Assume the field is increasing. (a) What is the
direction of the induced magnetic field in the coil and why? (b) What
is the direction of the induced current in the coil and why? (c) Which
terminal is at a higher voltage? [Hint: Draw a diagram. Only concern
yourself with what is happening inside the area of the coil.]

Fig. 32-9

32.16 [I]    Figure 32-9(b) depicts a two-turn horizontal coil in a uniform
upward B-field. Assume the field is increasing. (a) What is the
direction of the induced magnetic field in the coil and why? (b) What
is the direction of the induced current in the coil and why? (c) Which
terminal is at a higher voltage? [Hint: Draw a diagram. Only concern
yourself with what is happening inside the area of the coil. Study the
previous problem.]

32.17 [I]   Figure 32-9(a) depicts a two-turn horizontal coil in a uniform
downward b-field. Assume the field is decreasing. (a) What is the
direction of the induced magnetic field in the coil and why? (b) What
is the direction of the induced current in the coil and why? (c) Which
terminal is at a higher voltage? [Hint: Draw a diagram. Only concern
yourself with what is happening inside the area of the coil. Study the
previous two problems.]

32.18 [I]    Figure 32-9(b) depicts a two-turn horizontal coil in a uniform
upward B-field. Assume the field is decreasing. (a) What is the
direction of the induced magnetic field in the coil and why? (b) What
is the direction of the induced current in the coil and why? (c) Which
terminal is at a higher voltage? [Hint: Draw a diagram. Only concern



yourself with what is happening inside the area of the coil. Study the
previous three problems.]

32.19 [I]    Imagine a 100-turn flat coil much like that in Fig. 32-9(a). It is in
a uniform downward B-field that is decreasing uniformly at a rate of
0.020 T every second. The area of the coil is 0.25 m2. (a) Determine
the emf across the coil. (b) Which terminal is at the higher voltage?
[Hint: Draw a diagram. Use Eq. (32.4); don’t worry about the minus
sign, and only concern yourself with what is happening inside the
coil. Study the previous four problems.]

32.20 [I]   Imagine a 200-turn flat coil much like that in Fig. 32-9(b). It is in
a uniform upward b-field that is increasing uniformly at a rate of
0.240 T every 12.0 s. The area of the coil is 0.20 m2. (a) Determine
the emf across the coil. (b) Which terminal is at the higher voltage?
[Hint: Draw a diagram. Use Eq. (32.4); don’t worry about the minus
sign, and only concern yourself with what is happening inside the
coil. Study the previous five problems.]

32.21 [II]  A flux of 9.0 × 10-4 Wb is produced in the iron core of a
solenoid. When the core is removed, a flux (in air) of 5.0 × 10-7 Wb is
produced in the same solenoid by the same current. What is the
relative permeability of the iron?

32.22 [I]    In Fig. 32-10 there is a +x-directed uniform magnetic field of 0.2
T filling the space. Find the magnetic flux through each face of the
box shown.



Fig. 32-10

32.23 [II]   A solenoid 60 cm long has 5000 turns of wire and is wound on
an iron rod having a 0.75 cm radius. Find the flux inside the solenoid
when the current through the wire is 3.0 A. The relative permeability
of the iron is 300.

32.24 [II]   A room has its walls aligned accurately with respect to north,
south, east, and west. The north wall has an area of 15 m2, the east
wall has an area of 12 m2, and the floor’s area is 35 m2. At the site the
Earth’s magnetic field has a value of 0.60 G and is directed 50° below
the horizontal and 7.0° east of north. Find the magnetic flux through
the north wall, the east wall, and the floor.

32.25 [I]    The flux through the solenoid of Problem 32.17 is reduced to a
value of 1.0 mWb in a time of 0.050 s. Find the induced emf in the
solenoid.

32.26 [II]   A flat coil with a radius of 8.0 mm has 50 turns of wire. It is
placed in a magnetic field B = 0.30 T in such a way that the maximum
flux goes through it. Later, it is rotated in 0.020 s to a position such
that no flux goes through it. Find the average emf induced between
the terminals of the coil.

32.27 [II]   The square coil shown in Fig. 32-11 is 20 cm on a side and has
15 turns of wire. It is moving to the right at 3.0 m/s. Find the induced
emf (magnitude and direction) in it (a) at the instant shown and (b)
when the entire coil is in the field region. The uniform magnetic field
is 0.40 T into the page.

Fig. 32-11



32.28 [I]    Remove the resistor across the terminals of the coil on the left in
Fig. 32-3. Now suppose a battery is placed across terminals A and B
with its + side at B. (a) Describe the field produced by the coil. (b)
What is the polarity of the right end of the coil? (c) What would be
the effect on the bar magnet? Explain.

32.29 [I]    Remove the resistor across the terminals of the coil on the left in
Fig. 32-3. Now suppose a battery is placed across terminals a and b
with its – side at B. (a) Describe the field produced by the coil. (b)
What is the polarity of the right end of the coil? (c) What would be
the effect on the bar magnet? Explain.

32.30 [I]    In Fig. 32-3 the coil on the left is moved to the right toward the
stationary magnet at a constant rate. (a) What is the direction of the b-
field in the coil? Explain. (b) Is that field increasing or decreasing in
the coil? Explain. (c) If there is one, in what direction is the induced
magnetic field in the coil? Explain. (d) What is the direction of the
induced current in that coil? (e) Which terminal has the higher
voltage, a or b? (f) Is the right end of the moving coil a north or a
south pole? Explain.

32.31 [I]    In Fig. 32-3 the coil on the right is moved to the left toward the
stationary magnet at a constant rate. (a) What is the direction of the b-
field in the coil? Explain. (b) Is that field increasing or decreasing in
the coil? Explain. (c) If there is one, in what direction is the induced
magnetic field in the coil? Explain. (d) What is the direction of the
induced current in that coil? (e) Which terminal has the higher
voltage, C or D? (f) Is the left end of the moving coil a north or a
south pole? Explain.

32.32 [I]    The cylindrical magnet at the center of Fig. 32-12 rotates as
shown on a pivot through its center. At the instant shown, in what
direction is the induced current flowing (a) in resistor AB? (b) in
resistor CD?



Fig. 32-12

32.33 [II]   A train is moving directly south at a constant speed of 10 m/s. If
the downward vertical component of the Earth’s magnetic field is
0.54 G, compute the magnitude and direction of the emf induced in a
rail car axle 1.2 m long.

32.34 [III]  A copper disk of 10-cm radius is rotating at 20 rev/s about its
central symmetry axis. The plane of the disk is perpendicular to a
uniform magnetic field B = 0.60 T. What is the potential difference
between the center and rim of the disk? [Hint: There is some
similarity with Problem 32.13.]

32.35 [II]   How much charge will flow through a 200-Ω galvanometer
connected to a 400-Ω circular coil of 1000 turns wound on a wooden
stick 2.0 cm in diameter, if a uniform magnetic field B = 0.011 3 T
parallel to the axis of the stick is decreased suddenly to zero?

32.36 [III]  In Fig. 32-7, described in Problem 32.12, what is the
acceleration of the rod when its speed down the incline is ν?

ANSWERS TO SUPPLEMENTARY PROBLEMS

32.15 [I]   (a) Bi is upward to oppose the downward increase. (b) Ii is
counterclockwise from B to A, because that will induce the proper
upward field Bi. (c) VA > VB

32.16 [I]   (a) Bi is downward to oppose the upward increase. (b) Ii is
clockwise from b to A, because that will induce the proper
downward field Bi. (c) VA > VB

32.17 [I]   (a) Bi is downward to oppose the downward decrease. (b) Ii is
clockwise from A to B, because that will induce the proper
downward field Bi. (c) VA < VB



32.18 [I]   (a) Bi is upward to oppose the upward decrease. (b) Ii is
counterclockwise from A to B, because that will induce the
proper upward field Bi. (c) VA < VB

32.19 [I]    (a) 0.50 V; (b) VA < VB

32.20 [I]    (a) 0.80 V; (b) VA > VB

32.21 [II]    1.8 × 103

32.22 [I]     Zero through bottom and rear and front sides; through top, 1
mWb; through left side, 2 mWb; through right side, 0.8 mWb.

32.23 [II]    1.7 mWb

32.24 [II]    0.57 mWb, 56 μWb, 1.6 mWb

32.25 [I]     67 V

32.26 [II]    0.15 V

32.27 [II]    (a) 3.6 V counterclockwise; (b) zero

32.28 [I]   (a) Current comes out the + terminal of the battery causing a B-
field in the coil to the right; (b) the right end is a north magnetic
pole; (c) it repels the bar magnet.

32.29 [I]    (a) Current comes out the + terminal of the battery causing a B-
field in the coil to the left; (b) the right end is a south magnetic
pole; (c) it attracts the bar magnet.

32.30 [I]   (a) to the left; the field goes out the north pole of the magnet; (b)
increasing; the magnet is approaching the coil, and the field is
stronger closer; (c) the induced magnetic field is to the right; it
opposes the increasing applied field; (d) from b through the coil
to A; (e) VA > VB; ( f) north, which repels the approaching north

32.31 [I]   (a) to the left; the field goes out the north pole of the magnet; (b)



increasing; the coil is moving toward from the magnet, and the
field is getting stronger; (c) the induced magnetic field is to the
right; it opposes the increasing applied field; (d) from C through
the coil to D; (e) VD > VC; ( f) south, which repels the
approaching south

32.32 [I]   (a) directly from B to A; (b) directly from C to D

32.33 [II]   0.65 mV from west to east

32.34 [III]   0.38 V

32.35 [II]   5.9 μC

32.36 [III]   g sinθ-(B2L2ν/Rm) cos2 θ



Electric Generators and Motors

Electric Generators are machines that convert mechanical energy into
electrical energy. A simple generator that produces an ac voltage is shown
in Fig. 33-1(a). An external energy source (such as a diesel motor or a steam
turbine) turns the armature coil in a magnetic field . The wires of the coil
cut the field lines, and an emf

is induced between the terminals of the coil. In this relation, N is the number
of loops (each of area A) on the coil, and f is the frequency of its rotation.
Figure 33-1(b) shows the emf in graphical form.

As current is drawn from the generator, the wires of its coil experience a
retarding force because of the interaction between current and field. Thus,
the work required to rotate the coil is the source of the electrical energy
supplied by the generator. For any generator,
(Input mechanical energy) = (Output electrical energy) + (Friction and heat

losses)

Usually the losses are only a very small fraction of the input energy.



Fig. 33-1

Electric Motors convert electrical energy into mechanical energy. A simple
dc motor (i.e., one that runs on a constant voltage) is shown in Fig. 33-2.
The current through the armature coil interacts with the magnetic field to
cause a torque

on the coil (see Chapter 30), which rotates the coil and shaft. Here, θ is the
angle between the field lines and the perpendicular to the plane of the coil.
The split-ring commutator reverses I each time sin θ changes sign, thereby
ensuring that the torque always rotates the coil in the same sense. For such a
motor,

Average torque = (Constant) |NIAB|

Fig. 33-2

Because the rotating armature coil of the motor acts as a generator, a
back (or counter) emf is induced in the coil. The back emf opposes the
voltage source that drives the motor. Hence, the net potential difference that
causes current through the armature is

The mechanical power P developed within the armature of a motor is



The useful mechanical power delivered by the motor is slightly less, due to
friction, windage, and iron losses.

SOLVED PROBLEMS

ELECTRIC GENERATORS
33.1 [I]    An ac generator produces an output voltage of ε = 170 sin 377t

volts, where t is in seconds. What is the frequency of the ac
voltage?

A sine curve plotted as a function of time is no different from a
cosine curve, except for the location of t = 0. Since ε = 2πNBAf
cos 2πft, we have 377t = 2πft, from which we find that the
frequency f = 60 Hz.

33.2 [II]  How fast must a 1000-turn coil (each with a 20 cm2 area) turn in
the Earth’s magnetic field of 0.70 G to generate a voltage that has
a maximum value (i.e., an amplitude) of 0.50 V?

We assume the coil’s axis to be oriented in the field so as to give
maximum flux change when rotated. Then B = 7.0 × 10-5 T in the
expression

Because cos 2πft has a maximum value of unity, the amplitude of
the voltage is 2πNBAf. Therefore,

33.3 [II]  When turning at 1500 rev/min, a certain generator produces 100.0
V. What must be its frequency in rev/min if it is to produce 120.0
V?



Because the amplitude of the emf is proportional to the frequency,
we have, for two frequencies f1 and f2,

33.4 [II]    A certain generator has armature resistance 0.080 Ω and develops
an induced emf of 120 V when driven at its rated speed. What is
its terminal voltage when 50.0 A is being drawn from it?

The generator acts like a battery with emf = 120 V and internal
resistance r = 0.080 Ω. As with a battery,

Terminal p.d. = (emf) - Ir = 120 V - (50.0 A)(0.080 Ω) = 116 V

33.5 [III] Some generators, called shunt generators, use electromagnets in
place of permanent magnets, with the field coils for the
electromagnets activated by the induced voltage. The magnet coil
is in parallel with the armature coil (it shunts the armature). As
shown in Fig. 33-3, a certain shunt generator has an armature
resistance of 0.060 Ω and a shunt resistance of 100 Ω. What power
is developed in the armature when it delivers 40 kW at 250 V to
an external circuit?

Fig. 33-3

From P = VI,



Armature current

ELECTRIC MOTORS
33.6 [II]  The resistance of the armature in the motor shown in Fig. 33-2 is

2.30 Ω. It draws a current of 1.60 A when operating on 120 V.
What is its back emf under these circumstances?

The motor acts like a back emf in series with an IR drop through
its internal resistance. Therefore,

33.7 [II]  A 0.250-hp motor (like that in Fig. 33-2) has a resistance of 0.500
Ω. (a) How much current does it draw on 110 V when its output is
0.250 hp? (b) What is its back emf?

(a) Assume the motor to be 100 percent efficient so that the input
power VI equals its output power (0.250 hp). Then

(110 V)(I) = (0.250 hp)(746 W/hp) or I = 1.695 A

(b) Back emf = (line voltage) - Ir = 110 V - (1.695 A)(0.500 Ω) =
109 V

33.8 [III]  In a shunt motor, the permanent magnet is replaced by an



electromagnet activated by a field coil that shunts the armature.
The shunt motor shown in Fig. 33-4 has an armature resistance of
0.050 and is connected to a 120 V line. (a) What is the armature
current at the starting instant, i.e., before the armature develops
any back emf? (b) What starting rheostat resistance R, in series
with the armature, will limit the starting current to 60 A? (c) With
no starting resistance, what back emf is generated when the
armature current is 20 A? (d) If this machine were running as a
generator, what would be the total induced emf developed by the
armature when the armature is delivering 20 A at 120 V to the
shunt field and external circuit?

Fig. 33-4

from which R = 2.0 Ω.

33.9 [III] The shunt motor shown in Fig. 33-5 has an armature resistance of
0.25 Ω and a field resistance of 150 Ω. It is connected across 120-
V mains and is generating a back emf of 115 V. Compute: (a) the
armature current Ia, the field current If, and the total current It
taken by the motor; (b) the total power taken by the motor; (c) the
power lost in heat in the armature and field circuits; (d) the



electrical efficiency of this machine (when only heat losses in the
armature and field are considered).

Fig. 33-5

(b) Power input = (120 V)(20.80 A) = 2.5 kW
(c) loss in armature = (20 A)2(0.25 Ω) = 0.10 kW

 loss in field = (0.80 A)2(150 Ω) = 96 W

(d) Power output = (Power input) - (Power losses) = 2496 - (100 +
96) = 2.3 kW

Alternatively,

Power output = (Armature current)(Back emf) = (20 A)(115 V) =
2.3 kW

33.10 [II]  A motor has a back emf of 110 V and an armature current of 90
A when running at 1500 rpm. Determine the power and the torque
developed within the armature.

Power = (Armature current)(Back emf) = (90 A)(110 V) = 9.9 kW



From Chapter 10, power = τω where ω = 2πƒ = 2π (1500 × 1/60)
rad/s

33.11 [III] A motor armature develops a torque of 100 N·m when it draws
40 A from the line. Determine the torque developed if the armature
current is increased to 70 A and the magnetic field strength is reduced
to 80 percent of its initial value.

The torque developed by the armature of a given motor is
proportional to the armature current and to the field strength (see
Chapter 30). In other words, the ratio of the torques equals the
ratio of the two sets of values of |NIAB|. Using subscripts i and f
for initial and final values, Tf / Ti = If Bf / IiBi, hence,

SUPPLEMENTARY PROBLEMS

ELECTRIC GENERATORS
33.12 [I]    Determine the separate effects on the induced emf of a generator

if (a) the flux per pole is doubled, and (b) the speed of the armature is
doubled.

33.13 [II]  The emf induced in the armature of a shunt generator is 596 V.
The armature resistance is 0.100 Ω. (a) Compute the terminal voltage
when the armature current is 460 A. (b) The field resistance is 110 Ω.
Determine the field current, and the current and power delivered to
the external circuit.

33.14 [II]  A dynamo (generator) delivers 30.0 A at 120 V to an external
circuit when operating at 1200 rpm. What torque is required to



drive the generator at this speed if the total power losses are 400
W?

33.15 [II]  A 75.0-kW, 230-V shunt generator has a generated emf of 243.5
V. If the field current is 12.5 A at rated output, what is the
armature resistance?

33.16 [III] A 120-V generator is run by a windmill that has blades 2.0 m
long. The wind, moving at 12 m/s , is slowed to 7.0 m/s after
passing the windmill. The density of air is 1.29 kg/m3. If the
system has no losses, what is the largest current the generator can
produce? [Hint: How much energy does the wind lose per
second?]

ELECTRIC MOTORS
33.17 [II]  A generator has an armature with 500 turns, which cut a flux of

8.00 mWb during each rotation. Compute the back emf it develops
when run as a motor at 1500 rpm.

33.18 [I]   The active length of each armature conductor of a motor is 30
cm, and the conductors are in a field of 0.40 Wb/m3. A current of 15
A flows in each conductor. Determine the force acting on each
conductor.

33.19 [II]  A shunt motor with armature resistance 0.080 Ω is connected to
120 V mains. With 50 A in the armature, what are the back emf
and the mechanical power developed within the armature?

33.20 [II]  A shunt motor is connected to a 110-V line. When the armature
generates a back emf of 104 V, the armature current is 15 A.
Compute the armature resistance.

33.21 [II]  A shunt dynamo has an armature resistance of 0.120 Ω. (a) If it
is connected across 220-V mains and is running as a motor, what
is the induced (back) emf when the armature current is 50.0 A?
(b) If this machine is running as a generator, what is the induced
emf when the armature is delivering 50.0 A at 220 V to the shunt
field and external circuit?

33.22 [II]  A shunt motor has a frequency of 900 rpm when it is connected



to 120-V mains and delivering 12 hp. The total losses are 1048 W.
Compute the power input, the line current, and the motor torque.

33.23 [II]  A shunt motor has armature resistance 0.20 Ω and field
resistance 150 Ω, and draws 30 A when connected to a 120-V supply
line. Determine the field current, the armature current, the back emf,
the mechanical power developed within the armature, and the
electrical efficiency of the machine.

33.24 [II]  A shunt motor develops 80 N·m of torque when the flux density
in the air gap is 1.0 Wb/m2 and the armature current is 15 A. What is
the torque when the flux density is 1.3 Wb/m2 and the armature
current is 18 A?

33.25 [II]  A shunt motor has a field resistance of 200 Ω and an armature
resistance of 0.50 Ω and is connected to 120-V mains. The motor
draws a current of 4.6 A when running at full speed. What current will
be drawn by the motor if the speed is reduced to 90 percent of full
speed by application of a load?

ANSWERS TO SUPPLEMENTARY PROBLEMS

33.12 [I]    (a) doubled; (b) doubled

33.13 [II]    (a) 550 V; (b) 5 A, 455 A, 250 kW

33.14 [II]    31.8 N·m

33.15 [II]    0.039 9 Ω

33.16 [III]   77 A

33.17 [II]    100 V

33.18 [I]     1.8 N



33.19 [II]    0.12 kV, 5.8 kW

33.20 [II]    0.40 Ω

33.21 [II]    (a) 214 V; (b) 226 V

33.22 [II]    10 kW, 83 A, 93 N · m

33.23 [II]    0.80 A, 29 A, 0.11 kV, 3.3 kW, 93%

33.24 [II]    0.13 kN · m

33.25 [II]    28 A



Inductance; R-C and R-L Time Constants

Self-Inductance (L): A coil can induce an emf in itself. If the current in a
coil changes, the flux through the coil due to the current also changes. As a
result, the changing current in a coil induces an emf in that same coil.

Because an induced emf ε is proportional to ΔΦM/Δt and because ΔΦM is
proportional to ∆i, where i is the current that causes the flux,

Here i is the current through the same coil in which ε is induced. (We shall
denote a time-varying current by i instead of I.) The minus sign indicates
that the self-induced emf ε is a back emf and opposes the change in current.

The proportionality constant depends upon the geometry of the coil. We
represent it by L and call it the self-inductance of the coil. Then

For ε in units of V, i in units of A, and t in units of s, L is in henries (H).

Mutual Inductance (M): When the flux from one coil threads through
another coil, an emf can be induced in either one by the other. The coil that
contains the power source is called the primary coil. The other coil, in
which an emf is induced by the changing current in the primary, is called the
secondary coil. The induced secondary emf εs is proportional to the time
rate of change of the primary current, Δip /Δt:



where M is a constant called the mutual inductance of the two-coil system.

Energy Stored in an Inductor: Because of its self-induced back emf, work
must be done to increase the current through an inductor from zero to I. The
energy furnished to the coil in the process is stored in the coil and can be
recovered as the coil’s current is decreased once again to zero. If a current I
is flowing in an inductor of self-inductance L, then the energy stored in the
inductor is

For L in units of H and I in units of A, the energy is in J.

R-C Time Constant: Consider the R-C circuit shown in Fig. 34-1(a). The
capacitor is initially uncharged. If the switch is now closed, the current i in
the circuit and the charge q on the capacitor vary as shown in Fig. 34-1(b).
If we call the p.d. across the capacitor υc, writing the loop rule for this
circuit gives

Fig. 34-1

At the first instant after the switch is closed, υc = 0 and i = ε/R. As time
goes on, υc increases and i decreases. The time, in seconds, taken for the
current to drop to 1/2.718 or 0.368 of its initial value is RC, which is called
the time constant of the R-C circuit.

Also shown in Fig. 34-1(b) is the variation of q, the charge on the
capacitor, with time. At t = RC, q has attained 0.632 of its final value.

When a charged capacitor C with initial charge q0 is discharged through a
resistor R, its discharge current follows the same curve as for charging. The



charge q on the capacitor follows a curve similar to that for the discharge
current. At time RC, i = 0.368i0 and q = 0.368q0 during discharge.

R-L Time Constant: Consider the circuit in Fig. 34-2(a). The symbol 
represents a coil having a self-inductance of L henries. When the switch in
the circuit is first closed, the current in the circuit rises as shown in Fig. 34-
2(b). The current does not jump to its final value because the changing flux
through the coil induces a back emf in the coil, which opposes the rising
current. After L/R seconds, the current has risen to 0.632 of its final value
i∞. This time, t = L/R , is called the time constant of the R-L circuit. After a
long time, the current is changing so slowly that the back emf in the
inductor, L(Δi / Δt), is negligible. Then i = i∞ = ε / R.

Fig. 34-2

Exponential Functions are used as follows to describe the curves of Figs.
34-1 and 34-2:

where e = 2.718 is the base of the natural logarithms.
When t is equal to the time constant, the relations for a capacitor give i =

0.368i0 and q = 0.632q∞ for charging, and q = 0.368q∞ for discharging. The
equation for current in an inductor gives i = 0.632i∞ when t equals the time
constant.

The equation for i in the capacitor circuit (as well as for q in the capacitor



discharge case) has the following property: After n time constants have
passed,

For example, after four time constants have passed,

PROBLEM SOLVING GUIDE

Don’t confuse A for amps with A for cross-sectional area. Be careful when
converting area in cm2 to area in m2—1.00 cm2 = 10-4 m2. When playing
with equivalent units, go back to the defining equations. Among the most
used equations in this chapter are (34.2), (34.4), and (34.11).

SOLVED PROBLEMS

34.1 [II]  A steady current of 2 A in a coil of 400 turns causes a flux of 10-4

Wb to link (pass through) the loops of the coil. Compute (a) the
average back emf induced in the coil if the current is stopped in
0.08 s, (b) the inductance of the coil, and (c) the energy stored in
the coil.

34.2 [III]  A long air-core solenoid has cross-sectional area A and N loops of
wire on its length d. (a) Find its self-inductance. (b) What is its
inductance if the core material has a permeability of µ?

(a) We can write



Equating these two expressions for |ε| yields

If the current changes from zero to I, then the flux changes from
zero to ΦM. Therefore, ∆i = I and ΔΦM = ΦM in this case. The self-
inductance, assumed constant for all cases, is then

But for an air-core solenoid, B = μ0nI = μ(N/d)I. Substitution gives

(b) If the material of the core has permeability µ instead of μ0,
then B, and therefore L, will be increased by the factor μ / μ0. In
that case, L = μN2A/d. An iron-core solenoid has a much higher
self-inductance than an air-core solenoid has.

34.3 [II]    A solenoid 30 cm long is made by winding 2000 turns of wire on
an iron rod whose cross-sectional area is 1.5 cm2. If the relative
permeability of the iron is 600, what is the self-inductance of the
solenoid? What average emf is induced in the solenoid as the current
in it is decreased from 0.60 A to 0.10 A in a time of 0.030 s? Refer
back to Problem 34.2.

34.4 [II]    At a certain instant, a coil with a resistance of 0.40 Ω and a self-
inductance of 200 mH carries a current of 0.30 A that is
increasing at the rate of 0.50 A/s. (a) What is the potential



difference across the coil at that instant? (b) Repeat if the current
is decreasing at 0.50 A/s.

We can represent the coil by a resistance in series with an emf (the
induced emf), as shown in Fig. 34-3.

(a) Because the current is increasing, ε will oppose the current and
therefore have the polarity shown. We write the loop equation
for the circuit:

Vba-iR-ε = 0

Since vba is the voltage across the coil, and since ε = L|∆i/∆t|, we
have

Vcoil = iR + ε = (0.30 A)(0.40Ω) + (0.200 H)(0.50 A/s) = 0.22 V

(b) With i decreasing, the induced emf must be reversed in Fig. 34-
3. This gives Vcoil = iR - ε = 0.020 V.

Fig. 34-3

34.5 [II]  A coil of resistance 15 Ω and inductance 0.60 H is connected to a
steady 120-V power source. At what rate will the current in the
coil rise (a) at the instant the coil is connected to the power source,
and (b) at the instant the current reaches 80 percent of its
maximum value?



The effective driving voltage in the circuit is the 120 V power
supply minus the induced back emf, L(Δi / Δt). This equals the
p.d. in the resistance of the coil:

[This same equation can be obtained by writing the loop equation
for the circuit of Fig. 34-2(a). In doing so, remember that the
inductance acts as a back emf of value L(Δi / Δt).]

(a) At the first instant, i is essentially zero. Then

(b) The current reaches a maximum value of (120 V)/R when the
current finally stops changing (i.e., when Δi / Δt = 0). We are
interested in the case when

Substitution of this value for i in the loop equation gives

34.6 [II]  When the current in a certain coil is changing at a rate of 3.0 A/s,
it is found that an emf of 7.0 mV is induced in a nearby coil.
What is the mutual inductance of the combination?

34.7 [II]  Two coils are wound on the same iron rod so that the flux generated
by one passes through the other also. The primary coil has Np
loops and, when a current of 2.0 A flows through it, the flux in it



is 2.5 × 10-4 Wb. Determine the mutual inductance of the two coils
if the secondary coil has Ns loops.

34.8 [II]  A 2000-loop solenoid is wound uniformly on a long rod with length
d and cross-section A. The relative permeability of the iron is km.
On top of this is wound a 50-loop coil which is used as a
secondary. Find the mutual inductance of the system.

The flux through the solenoid is

This same flux goes through the secondary. We have, then,

from which

34.9 [II]    A certain series circuit consists of a 12-V battery, a switch, a 1.0-
MΩ resistor, and a 2.0-µF capacitor, initially uncharged. If the
switch is now closed, find (a) the initial current in the circuit, (b)
the time for the current to drop to 0.37 of its initial value, (c) the
charge on the capacitor then, and (d) the final charge on the
capacitor.

(a) The loop rule applied to the circuit of Fig. 34-1(a) at any instant
gives

12 V - iR - υc = 0



where υc is the p.d. across the capacitor. At the first instant, q is
essentially zero and so υc = 0. Then

(b) The current drops to 0.37 of its initial value when

t = RC = (1.0 × 106 Ω)(2.0 × 10-6 F) = 2.0 s

(c) At t = 2.0 s the charge on the capacitor has increased to 0.63 of
its final value. [See part (d) below.]

(d) The charge ceases to increase when i = 0 and υc = 12 V.
Therefore,

qfinal = Cυc = (2.0 × 10-6 F)(12 V) = 24 µC

34.10 [II]  A 5.0-µF capacitor is charged to a potential difference of 20 kV
across its plates. After being disconnected from the power source, it is
connected across a 7.0-MΩ resistor to discharge. What is the initial
discharge current, and how long will it take for the capacitor voltage
to decrease to 37 percent of the 20 kV?

The loop equation for the discharging capacitor is

υc - iR = 0

  where υc is the p.d. across the capacitor. At the first instant, υc =
20 kV, so

The potential across the capacitor, as well as the charge on it,
will decrease to 0.37 of its original value in one time constant. The
required time is

RC = (7.0 × 106 Ω)(5.0 × 10-6 F) = 35 s



34.11 [II]  A coil has an inductance of 1.5 H and a resistance of 0.60 Ω. If
the coil is suddenly connected across a 12-V battery, find the
time required for the current to rise to 0.63 of its final value.
What will be the final current through the coil?

The time required is the time constant of the circuit:

After a long time, the current will be steady, and so no back emf
will exist in the coil. Under those conditions,

34.12 [I]  A capacitor that has been charged to 2.0 × 105 V is allowed to
discharge through a resistor. What will be the voltage across the
capacitor after five time constants have elapsed?

We know, via [Eq. (34.10)], that after n time constants, q =
q∞(0.368)n. Because υ is proportional to q (that is, υ = q / C), we
may write

υn=5 = (2.0 × 105 V)(0.368)5 = 1.4 kV

34.13 [II]  A 2.0-µF capacitor is charged through a 30-MΩ resistor by a 45-
V battery. Find (a) the charge on the capacitor and (b) the current
through the resistor, both determined 83 s after the charging
process starts.

The time constant of the circuit is RC = 60 s. Also,



34.14 [II]  If, in Fig. 34-2, R = 20 Ω, L = 0.30 H, and ε = 90 V, what will be
the current in the circuit 0.050 s after the switch is closed?

We are going to use the exponential equation for i given in Eq.
(34.9).

The time constant for this circuit is L/R = 0.015 s, and i∞ = ε / R =
4.5 A. Then

SUPPLEMENTARY PROBLEMS

34.15 [I]    Show that 1.00 Wb = 1.00 V · s. [Hint: Use Faraday’s Law, Eq.
(32.4).]

34.16 [I]    Show that 1.00 T = 1.00 N/A · m. [Hint: Use Eq. (30.1).]

34.17 [I]    Show that 1.00 H = 1.00 T · m2 / A. [Hint: Use the defining
expression Eq. (34.2).]

34.18 [I]   Determine the back emf induced in a coil whose self-inductance is
8.20 mH when the current through the coil is changing at a
constant rate of 100 A per second. [Hint: Use the defining
expression for L, Eq. (34.2).]

34.19 [I]   How much energy is stored in a 0.500-H inductor carrying a



current of 4.80 A?

34.20 [I]   The current in a coil starts out at 6.00 A and drops uniformly to
zero in a time of 6.00 ms. Determine the self-inductance, given
that there is a measured emf of 200 V across the coil while the
current is dropping.

34.21 [I]   An air-core coil has 400 turns and is 2.00 cm long. It has a cross-
sectional area of 1.00 cm2. Determine its self-inductance. [Hint:
Study Eq. (34.11).]

34.22 [I]   An emf of 8.0 V is induced in a coil when the current in it changes
at the rate of 32 A/s. Compute the inductance of the coil.

34.23 [I]   A steady current of 2.5 A creates a flux of 1.4 × 10-4 Wb in a coil
of 500 turns. What is the inductance of the coil?

34.24 [I]   The mutual inductance between the primary and secondary of a
transformer is 0.30 H. Compute the induced emf in the secondary
when the primary current changes at the rate of 4.0 A/s.

34.25 [II]   A coil of inductance 0.20 H and 1.0-Ω resistance is connected to
a constant 90-V source. At what rate will the current in the coil
grow (a) at the instant the coil is connected to the source, and (b)
at the instant the current reaches two-thirds of its maximum
value?

34.26 [II]  Two neighboring coils, A and B, have 300 and 600 turns,
respectively. A current of 1.5 A in A causes 1.2 × 10-4 Wb to pass
through A and 0.90 × 10-4 Wb to pass through B. Determine (a)
the self-inductance of A, (b) the mutual inductance of A and B,
and (c) the average induced emf in B when the current in A is
interrupted in 0.20 s.

34.27 [I]     A coil of 0.48 H carries a current of 5 A. Compute the energy
stored in it.

34.28 [I]   The iron core of a solenoid has a length of 40 cm and a cross



section of 5.0 cm2, and is wound with 10 turns of wire per cm of
length. Compute the inductance of the solenoid, assuming the
relative permeability of the iron to be constant at 500.

34.29 [I]     Show that (a) 1 N/A2 = 1 T · m /A = 1 Wb/A · m = 1 H/m, and
(b) 1 C2 / N · m2 = 1 F / m.

34.30 [II]   A series circuit consisting of an uncharged 2.0-µF capacitor and
a 10-MΩ resistor is connected across a 100-V power source.
What are the current in the circuit and the charge on the capacitor
(a) after one time constant, and (b) when the capacitor has
acquired 90 percent of its final charge?

34.31 [II]   A charged capacitor is connected across a 10-kΩ resistor and
allowed to discharge. The potential difference across the
capacitor drops to 0.37 of its original value after a time of 7.0 s.
What is the capacitance of the capacitor?

34.32 [II]   When a long iron-core solenoid is connected across a 6-V
battery, the current rises to 0.63 of its maximum value after a time of
0.75 s. The experiment is then repeated with the iron core removed.
Now the time required to reach 0.63 of the maximum is 0.002 5 s.
Calculate (a) the relative permeability of the iron and (b) L for the air-
core solenoid if the maximum current is 0.5 A.

34.33 [I]     What fraction of the initial current still flows in the circuit of
Fig. 34-1 seven time constants after the switch has been closed?

34.34 [II]    By what fraction does the current in Fig. 34-2 differ from i∞
three time constants after the switch is first closed?

34.35 [II]   In Fig. 34-2, R = 5.0 Ω, L = 0.40 H, and ε = 20 V. Find the
current in the circuit 0.20 s after the switch is first closed.

34.36 [II]  The capacitor in Fig. 34-1 is initially uncharged when the switch
is closed. Find the current in the circuit and the charge on the
capacitor five seconds later. Use R = 7.00 MΩ, C = 0.300 µF, and
ε = 12.0 V.



ANSWERS TO SUPPLEMENTARY PROBLEMS

34.15 [I]     1.00 V = 1.00 (Wb/m2) m2/s = 1.00 Wb/s

34.16 [I]     1.00 T = 1.00 N/C · m/s = 1.00 N/A · m

34.17 [I]     1.00 H = 1.00 V · s/A = 1.00 Wb/A = 1.00 T · m2/ A

34.18 [I]     −0.820 V

34.19 [I]     5.76 J

34.20 [I]     0.20 H

34.21 [I]     10.1 H

34.22 [I]     0.25 H

34.23 [I]     28 mH

34.24 [I]     1.2 V

34.25 [II]   (a) 0.45 kA/s; (b) 0.15 kA/s

34.26 [II]   (a) 24 mH; (b) 36 mH; (c) 0.27 V

34.27 [I]     6 J

34.28 [I]     0.13 H

34.30 [II]   (a) 3.7 µA, 0.13 mC; (b) 1.0 μA, 0.18 mC

34.31 [II]   0.70 mF

34.32 [II]   (a) 0.3 × 103; (b) 0.03 H

34.33 [I]     0.000 91



34.34 [II]    (i∞ - i)/i∞ = 0.050

34.35 [II]   3.7 A

34.36 [II]   159 nA, 3.27 µC



Alternating Current

The Emf Generated by a Rotating Coil in a magnetic field has a graph
similar to the one shown in Fig. 35-1. It is called an ac voltage because there
is a reversal of polarity (i.e., the voltage changes sign); ac voltages need not
be sinusoidal. If the coil rotates with a frequency of ƒ revolutions per
second, then the emf has a frequency of ƒ in hertz (cycles per second). The
instantaneous voltage υ that is generated has the form

where υ0 is the amplitude (maximum value) of the voltage in volts, and ω =
2πf is the angular velocity in rad/s. The frequency ƒ of the voltage is related
to its period T by

where T is in seconds.
Rotating coils are not the only source of ac voltages; electronic devices

for generating ac voltages are very common. Alternating voltages produce
alternating currents.

An alternating current produced by a typical generator has a graph much
like that for the voltage shown in Fig. 35-1. Its instantaneous value is i, and
its amplitude is i0. Often the current and voltage do not reach a maximum at
the same time, even though they both have the same frequency.



Fig. 35-1

Meters (i.e., measuring devices) for use in ac circuits read the effective, or
root mean square (rms), values of the current and voltage. These values are
always positive and are related to the amplitudes of the instantaneous
sinusoidal values through

It is customary to represent meter readings by capital letters (V, I), while
instantaneous values are represented by small letters (υ, i). Keep in mind
that υ0 = Vmax and i0 = Imax.

The Thermal Energy Generated or Power Lost by an rms current I in a
resistor R is given by I2R.

Forms of Ohm’s Law: Suppose that a sinusoidal current of frequency ƒ
with rms value I flows through a pure resistor R, or a pure inductor L, or a
pure capacitor C. Then an ac voltmeter placed across the element in
question will read an rms voltage V as follows:

is called the inductive reactance. Its unit is ohms when L is in henries and ƒ
is in hertz.



is called the capacitive reactance. Its unit is ohms when C is in farads.

Phase: When an ac voltage is applied to a pure resistance, the voltage across
the resistance and the current through it attain their maximum values at the
same instant and their zero values at the same instant; the voltage and
current are said to be in-phase.

When an ac voltage is applied to a pure inductance, the voltage across the
inductance reaches its maximum value one-quarter cycle ahead of the
current—that is, when the current is zero. The back emf of the inductance
causes the current through the inductance to lag behind the voltage by one-
quarter cycle (or 90°), and the two are 90° out-of-phase.

When an ac voltage is applied to a pure capacitor, the voltage across it
lags 90° behind the current flowing through it. Current must flow before the
voltage across (and charge on) the capacitor can build up.

In more complicated situations involving combinations of R, L, and C,
the volta ge and current are usually (but not always) out-of-phase. The angle
by which the voltage lags or leads the current is called the phase angle.

The Impedance (Z) of a series circuit containing resistance, inductance, and
capacitance is given by

with Z in ohms. If a voltage V is applied to such a series circuit, then a form
of Ohm’s Law relates V to the current I through it:

The phase angle φ between V and I is given by

Phasors: A phasor is a quantity that behaves, in many regards, like a
vector. Phasors are used to describe series R-L-C circuits because the above
expression for the impedance can be associated with the Pythagorean
theorem for a right triangle. As shown in Fig. 35-2(a), Z is the hypotenuse



of the right triangle, while R and (XL - XC) are its two legs. The angle
labeled φ is the phase angle between the current and the voltage.

Fig. 35-2

A similar relation applies to the voltages across the elements in the series
circuit. As illustrated in Fig. 35-2(b), it is

Because of the phase differences a measurement of the voltage across a
series circuit is not equal to the algebraic sum of the individual voltage
readings across its elements. Instead, the above relation must be used.

Resonance occurs in a series R-L-C circuit when XL = XC. Under this
condition Z = R is minimum, so that I is maximum for a given value of V.
Equating XL to XC, we find for the resonant (or natural) frequency of the
circuit

Power Loss: Suppose that an ac voltage V is impressed across an
impedance of any type. It gives rise to a current I through the impedance,
and the phase angle between V and I is φ. The power loss in the impedance
is given by

The quantity cos φ is called the power factor. It is unity for a pure resistor;
but it is zero for a pure inductor or capacitor (no power loss occurs in a pure
inductor or capacitor).

A Transformer is a device used to raise or lower the voltage in an ac
circuit. It consists of a primary and a secondary coil wound on the same iron



core. An alternating current in one coil creates a continuously changing
magnetic flux through the core. This change of flux induces an alternating
emf in the other coil.

The efficiency of a transformer is usually very high. Thus, we may often
neglect losses and write

The voltage ratio equals the ratio of the numbers of turns on the two coils;
the current ratio equals the inverse ratio of the numbers of turns:

PROBLEM SOLVING GUIDE

Remember that in an ac circuit, ammeters and voltmeters read out effective
values; they average the time varying inputs and provide rms values. Keep
in mind that capacitors are open circuits to dc; they have an infinite
reactance at f = 0. Similarly the reactance of an inductor to dc (i.e., when f =
0) is zero. Thus the impedance (Z) of an inductor to dc just equals its
resistance (R).

SOLVED PROBLEMS

35.1 [I]    A sinusoidal, 60.0-Hz, ac voltage is read to be 120 V by an
ordinary ac voltmeter. (a) What is the maximum value the voltage
takes on during a cycle? (b) What is the equation for the voltage?

(b) υ = υ0 sin 2πft = (170V) sin 120πt
where t is in s, and υ0 is the maximum voltage.

35.2 [I]   A time-varying voltage υ = (60.0 V) sin 120πt is applied across a
20.0-Ω resistor. What will an ac ammeter in series with the resistor



read?
The rms voltage across the resistor is

35.3 [II]    A 120-V ac voltage source is connected across a 2.0-µF capacitor.
Find the current to the capacitor if the frequency of the source is
(a) 60 Hz and (b) 60 kHz. (c) What is the power loss in the
capacitor?

(b) Now Xc = 1.33Ω, so I = 90 A. Notice that the impedance of a
capacitor varies inversely with the frequency.

(c) Inasmuch as cosϕ = R/Z and R = 0;

Power loss = VI cosϕ = VI cos90° = 0

35.4 [II]    A 120-V ac voltage source is connected across a pure 0.700-H
inductor. Find the current through the inductor if the frequency of
the source is (a) 60.0 Hz and (b) 60.0 kHz. (c) What is the power
loss in the inductor?

(b) Now XL = 264 × 103 Ω, so I = 0.455 × 10−3 A. Notice that the
impedance of an inductor varies directly with the frequency.

(c) Inasmuch as cosϕ = R/Z and R = 0;

Power loss = VI cosϕ = VI cos90° = 0

35.5 [II]    A coil having inductance 0.14 H and resistance of 12 Ω is
connected across a 110-V, 25-Hz line. Compute (a) the current in the



coil, (b) the phase angle between the current and the supply voltage,
(c) the power factor, and (d) the power loss in the coil.

The voltage leads the current by 61°.
(c) Power factor = cosϕ = cos61.3° = 0.48
(d) Power loss = VIcosϕ = (110 V)(4.4 A)(0.48) = 0.23 kW
Or, since power loss occurs only because of the resistance of the

coil,

Power loss = I2R = (4.4 A)2(12 Ω) = 0.23 kW

35.6 [II]    A capacitor is in series with a resistance of 30 Ω and is connected
to a 220-V ac line. The reactance of the capacitor is 40 Ω.
Determine (a) the current in the circuit, (b) the phase angle
between the current and the supply voltage, and (c) the power loss
in the circuit.

The minus sign tells us that the voltage lags the current by 53°.
The angle φ in Fig. 35-2 would lie below the horizontal axis.

(c) Method 1
Power loss = VIcosϕ = (220)(4.4) cos (−53°) = (220)(4.4) cos 53°

= 0.58 kW
Method 2
Because the power loss occurs only in the resistor, and not in the

pure capacitor,



Power loss = I2R = (4.4 A)2(30 Ω) = 0.58 kW

35.7 [III] A series circuit consisting of a 100-Ω noninductive resistor, a coil
with a 0.10-H inductance and negligible resistance, and a 20-µF
capacitor is connected across a 110-V, 60-Hz power source. Find
(a) the current, (b) the power loss, (c) the phase angle between the
current and the source voltage, and (d) the voltmeter readings
across the three elements.

(b) The power loss all occurs in the resistor, so

Power loss = I2R = (0.79 A)2(100 Ω) = 63 W

The voltage lags the current.
(d) VR = IR = (0.79 A)(100 Ω) = 79 V

    Vc = IXc = (0.79 A)(132.7 Ω) = 0.11 kV
    VL = IXL = (0.79 A)(37.7 Ω) = 30 V
   Notice that VC + VL + VR does not equal the source voltage. From

Fig. 35-2(b), the correct relationship is

which checks within the limits of rounding-off errors.
35.8 [III] A 5.00-Ω resistance is in a series circuit with a 0.200-H pure

inductance and a 40.0-nF pure capacitance. The combination is
placed across a 30.0-V, 1780-Hz power supply. Find (a) the
current in the circuit, (b) the phase angle between source voltage
and current, (c) the power loss in the circuit, and (d) the voltmeter



reading across each element of the circuit.

This circuit is in resonance because XC = XL. Notice how very
large the voltages across the inductor and capacitor become, even
though the source voltage is low.

35.9 [III] As shown in Fig. 35-3, a series circuit connected across a 200-V,
60-Hz line consists of a capacitor of capacitive reactance 30 Ω, a
noninductive resistor of 44 Ω, and a coil of inductive reactance 90
Ω and resistance 36 Ω. Determine (a) the current in the circuit, (b)
the potential difference across each element, (c) the power factor
of the circuit, and (d) the power absorbed by the circuit.

Fig. 35-3



35.10 [I]   Calculate the resonant frequency of a circuit of negligible
resistance containing an inductance of 40.0 mH and a capacitance of
600 pF.

35.11 [I]    A step-up transformer is used on a 120-V line to furnish 1800 V.
The primary has 100 turns. How many turns are on the secondary?

from which N2 = 1.50 × 103 turns.

35.12 [I]    A transformer used on a 120-V line delivers 2.0 A at 900 V.
What current is drawn from the line? Assume 100 percent efficiency.

35.13 [I]    A step-down transformer operates on a 2.5-kV line and supplies
a load with 80 A. The ratio of the primary winding to the secondary
winding is 20 : 1. Assuming 100 percent efficiency, determine the
secondary voltage V2, the primary current I1, and the power output P2.



The last expression is correct only if it is assumed that the load is
pure resistive, so that the power factor is unity.

SUPPLEMENTARY PROBLEMS

35.14 [I]  An ammeter in a 60.0-Hz circuit reads 2.50 A. Determine the
maximum current in the circuit. [Hint: Study Eqs. (35.3) and
(35.4).]

35.15 [I]  Suppose the electrical power in an ac system has an effective
voltage of 110 V. Determine the maximum voltage across the
output terminals. [Hint: Study Eqs. (35.3) and (35.4).]

35.16 [I]  The ac current in a 60.0-Hz circuit has an effective value of 2.50
A. It passes through a 25.0-Ω resistor. Determine the maximum
voltage across the resistor. [Hint: Study Eqs. (35.3) and (35.4).]

35.17 [I]  A coil possessing an inductance of 0.400 H is in a 60.0-Hz circuit.
Determine its inductive reactance.

35.18 [I]  A 420-mF capacitor is in a 60.0-Hz circuit. Determine its
capacitive reactance.

35.19 [I]  A coil possessing an inductance of 0.400 H and a resistance of
2.00 Ω is placed across a 6.00-V battery. Determine the sustained
current in the circuit.

35.20 [I]  A voltmeter reads 80.0 V when it is connected across the
terminals of a sinusoidal power source with ƒ = 1000 Hz. Write
the equation for the instantaneous voltage provided by the source.

35.21 [I]  An ac current in a 10 Ω resistance produces thermal energy at the
rate of 360 W. Determine the effective values of the current and
voltage.



35.22 [I]  A 40.0-Ω resistor is connected across a 15.0-V variable-frequency
electronic oscillator. Find the current through the resistor when the
frequency is (a) 100 Hz and (b) 100 kHz.

35.23 [I]  Solve Problem 35.22 if the 40.0-Ω resistor is replaced by a 2.00-
mH inductor.

35.24 [I]  Solve Problem 35.22 if the 40.0-Ω resistor is replaced by 0.300-µF
capacitor.

35.25 [II]  A coil has resistance 20 Ω and inductance 0.35 H. Compute its
reactance and its impedance to an alternating current of 25
cycles/s.

35.26 [II]  A current of 30 mA is supplied to a 4.0-µF capacitor connected
across an alternating current line having a frequency of 500 Hz.
Compute the reactance of the capacitor and the voltage across the
capacitor.

35.27 [II]  A coil has an inductance of 0.100 H and a resistance of 12.0 Ω. It
is connected to a 110-V, 60.0-Hz line. Determine (a) the
reactance of the coil, (b) the impedance of the coil, (c) the current
through the coil, (d) the phase angle between current and supply
voltage, (e) the power factor of the circuit, and (f) the reading of a
wattmeter connected in the circuit.

35.28 [III] A 10.0-µF capacitor is in series with a 40.0-Ω resistance, and the
combination is connected to a 110-V, 60.0-Hz line. Calculate (a)
the capacitive reactance, (b) the impedance of the circuit, (c) the
current in the circuit, (d) the phase angle between current and
supply voltage, and (e) the power factor for the circuit.

35.29 [III] A circuit having a resistance, an inductance, and a capacitance in
series is connected to a 110-V ac line. For the circuit, R = 9.0 Ω,
XL = 28 Ω, and XC = 16 Ω. Compute (a) the impedance of the
circuit, (b) the current, (c) the phase angle between the current
and the supply voltage, and (d) the power factor of the circuit.



35.30 [II]  An experimenter has a coil of inductance 3.0 mH and wishes to
construct a circuit whose resonant frequency is 1.0 MHz. What
should be the value of the capacitor used?

35.31 [II]  A circuit has a resistance of 11 Ω, a coil of inductive reactance
120 Ω, and a capacitor with a 120-Ω reactance, all connected in
series with a 110-V, 60-Hz power source. What is the potential
difference across each circuit element?

35.32 [II]  A 120-V, 60-Hz power source is connected across an 800-Ω
noninductive resistance and an unknown capacitance in series.
The voltage drop across the resistor is 102 V. (a) What is the
voltage drop across the capacitor? (b) What is the reactance of the
capacitor?

35.33 [II]  A coil of negligible resistance is connected in series with a 90-Ω
resistor across a 120-V, 60-Hz line. A voltmeter reads 36 V
across the resistance. Find the voltage across the coil and the
inductance of the coil.

35.34 [I]  The primary of an ideal transformer having negligible losses has
200 times the number of turns as the secondary. If the input
power is 200 W ac, what is the output power?

35.35 [I]  The primary of an ideal transformer having negligible losses has
200 times the number of turns as the secondary. If the input
power is 200 W dc, what is the output power? The load is purely
resistive.

35.36 [I]  The secondary of a transformer having negligible losses has 300
times the number of turns as the primary. If the input voltage is
110 V ac, what is the output voltage?

35.37 [I]  The secondary of a transformer having negligible losses has 300
times the number of turns as the primary. If the output current is
50.0 mA ac, what is the input current?

35.38 [I]   A step-down transformer is used on a 2.2-kV line to deliver 110



V. How many turns are on the primary winding if the secondary
has 25 turns?

35.39 [I]   A step-down transformer is used on a 1650-V line to deliver 45 A
at 110 V. What current is drawn from the line? Assume 100
percent efficiency.

35.40 [II]  A step-up transformer operates on a 110-V line and supplies a
load with 2.0 A. The ratio of the primary and secondary windings
is 1 : 25. Determine the secondary voltage, the primary current,
and the power output. Assume a resistive load and 100 percent
efficiency.

ANSWERS TO SUPPLEMENTARY PROBLEMS

35.14 [I]    3.54 A

35.15 [I]    156 V

35.16 [I]    88.4 V

35.17 [I]    151 Ω

35.18 [I]    6.32 mΩ

35.19 [I]    3.00 A

35.20 [I]    υ = (113 V) sin 2000πt for t in seconds

35.21 [I]    6.0 A, 60 V

35.22 [I]    (a) 0.375 A; (b) 0.375 A

35.23 [I]    (a) 11.9 A; (b) 11.9 mA

35.24 [I]    (a) 2.83 mA; (b) 2.83 A



35.25 [II]    55 Ω, 59 Ω

35.26 [II]    80 Ω, 2.4 V

35.27 [II]    (a) 37.7 Ω; (b) 39.6 Ω; (c) 2.78 A; (d) voltage leads by 72.3°; (e)
0.303; (ƒ) 92.6 W

35.28 [III]  (a) 266 Ω; (b) 269 Ω; (c) 0.409 A; (d) voltage lags by 81.4°; (e)
0.149

35.29 [III]  (a) 15 Ω; (b) 7.3 A; (c) voltage leads by 53°; (d) 0.60

35.30 [II]    8.4 pF

35.31 [II]    VR = 0.11 kV, VL = VC = 1.2 KV.

35.32 [II]    (a) 63 V; (b) 0.50 kΩ

35.33 [II]    0.11 kV, 0.76 H

35.34 [I]    200 W ac

35.35 [I]    zero

35.36 [I]    33.0 kV

35.37 [I]    15.0 A

35.38 [I]    5.0 × 102

35.39 [I]    3.0 A

35.40 [II]    2.8 kV, 50 A, 5.5 kW



Reflection of Light

The Nature of Light: Light (along with all other forms of electromagnetic
radiation) is a fundamental entity and physics is still struggling to
understand it. On an observable level, light manifests two seemingly
contradictory behaviors, crudely pictured via wave and particle models.
Usually the amount of energy present is so large that light behaves as if it
were an ideal continuous wave, a wave of interdependent electric and
magnetic fields. The interaction of light with lenses, mirrors, prisms, slits,
and so forth, can satisfactorily be understood via the wave model (provided
we don’t probe too deeply into what’s happening on a microscopic level).
On the other hand, when light is emitted or absorbed by the atoms of a
system, these processes occur as if the radiant energy is in the form of
minute, localized, well-directed blasts; that is, as if light is a stream of
“particles.” Fortunately, without worrying about the very nature of light, we
can predict its behavior in a wide range of practical situations.

Law of Reflection: A ray is a mathematical line drawn perpendicular to the
wavefronts of a lightwave. It shows the direction of propagation of
electromagnetic energy. In specular (or mirror) reflection, the angle of
incidence (θi) equals the angle of reflection (θr), as shown in Fig. 36-1.
Furthermore, the incident ray, reflected ray, and normal to the surface all lie
in the same plane, called the plane-of-incidence.



Fig. 36-1

Plane Mirrors form images that are erect, of the same size as the object,
and as far behind the reflecting surface as the object is in front of it. Such an
image is virtual—the image will not appear on a screen located at the
position of the image because the light does not converge there. In other
words, an image is virtual when it is formed by diverging rays.

Spherical Mirrors: The principal focus of a spherical mirror, such as the
ones depicted in Fig. 36-2, is the point F where rays parallel to and very
close to the central or optical axis of the mirror are focused. A concave
mirror can form real images where the rays converge to the image. Such an
image can appear on a screen. This focus is real for a concave mirror and
virtual for a convex mirror. It is located on the optical axis and midway
between the center of curvature C and the mirror.

Fig. 36-2

Concave mirrors form inverted real images of objects placed beyond the
principal focus. If the object is between the principal focus and the mirror,
the image is virtual, erect, and enlarged.

Convex mirrors produce only erect virtual images of objects placed in
front of them. The images are diminished (smaller than the object) in size.



Examine a polished spoon.

Ray Tracing: We can locate the image of any point on an object by tracing
at least two rays from that point through the optical system that forms the
image—in this case the system is a mirror. There are four especially
convenient rays to use because we know, without making any calculations,
exactly how they will reflect from the mirror. These rays are shown for a
concave spherical mirror in Fig. 36-3, and for a convex spherical mirror in
Fig. 36-4. Notice that a line drawn from C to the point of reflection is a
radius and therefore normal to the mirror’s surface. That line always bisects
the angle formed by the incident and reflected rays (i.e.,θi = θr).

Mirror Equation for both concave and convex spherical mirrors:

Fig. 36-3



Fig. 36-4

There are several sign conventions; the following is the most widely used
one. With light entering from the left:

TABLE 36-1
Images of real objects formed by spherical mirrors

SIGN CONVENTION

• s0 is positive when the object is in front (i.e., to the left) of the mirror.
• si is positive when the image is real (i.e., in front or to the left of the

mirror).
• si is negative when the image is virtual (i.e., behind or to the right of

the mirror).
• f is positive for a concave mirror and negative for a convex mirror.
• R is positive when C is to the right of the mirror (i.e., when the mirror

is convex).
• R is negative when C is to the left of the mirror (i.e, when the mirror



is concave).

The Size of the Image formed by a spherical mirror is given by

A negative magnification tells us that the image is inverted. Here yi and y0
are the heights of the image and object, respectively, where either one is
positive when above the central axis and negative when below it.

Figure 36-5 is a summary of the image-forming behavior of a concave
mirror. In part (a) the object, a man with an umbrella, is far from the mirror,
and his image is just to the left of the focal point. The rest of the diagram
illustrates what happens to the image as the man walks closer to the mirror.



Fig. 36-5

PROBLEM SOLVING GUIDE

As long as you keep everything in the same units, you need not always
convert to SI. For example, if all the distances are given in cm, you can
work the problem in cm and leave your answers in cm or convert that at the
end of the calculation. When dealing with spherical mirrors, check your
results against Table 36-1. Always draw a diagram. Study Figs. 36-3, 36-4,
and 36-5. Check your results with the sign convention listing. You must



memorize the sign convention. Unfortunately not every author uses the same
sign convention; the one given here is the most common.

SOLVED PROBLEMS

36.1 [II]    Two plane mirrors make an angle of 30° with each other. Locate
graphically four images of a luminous point A placed between the
two mirrors. (See Fig. 36-6.)

From A draw normals AA' and AB' to mirrors OY and OX,
respectively, making 

Then A' and B' are images of A.

Next, from A' and B' draw normals to OX and OY, making 
. Then A" is the image of A' in OX and B"

is the image of B' in OY.

The four images of A are A', B', A", B". Additional images also
exist, for example, images of A" and B".

Fig. 36-6

36.2 [II]    A boy is 1.50 m tall and can just see his image in a vertical plane
mirror 3.0 m away. His eyes are 1.40 m from the floor level.
Determine the vertical dimension and elevation of the shortest
mirror in which he could see his full image.

In Fig. 36-7, let AB represent the boy. His eyes are at E. Then A'B'



is the image of AB in mirror MR, and DH represents the shortest
mirror necessary for the eye to view the image A'B'.

Triangles DEC and DA'M are congruent and so

Triangles HRB' and HCE are congruent and so

The dimension of the mirror is 

Fig. 36-7

36.3 [II]    As shown in Fig. 36-8, a light ray IO is incident on a small plane
mirror. The mirror reflects this ray back onto a straight ruler SC
which is 1 m away from and parallel to the undeflected mirror
MM. When the mirror turns through an angle of 8.0° and assumes
the position M'M', across what distance on the scale will the spot
of light move? (This device, called an optical lever, is useful in
measuring small deflections.)

When the mirror turns through 8.0° the normal to it also turns
through 8.0°, and the incident ray makes an angle of 8.0° with the
normal NO to the deflected mirror M'M'. Because the incident ray
IO and the reflected ray OR make equal angles with the normal,
angle IOR is twice the angle through which the mirror has turned,



or 16°. Then

Fig. 36-8

36.4 [II]    The concave spherical mirror shown in Fig. 36-9 has radius of
curvature 4 m. An object OO', 5 cm high, is placed 3 m in front
of the mirror. By (a) construction and (b) computation, determine
the position and height of the image II'.

In Fig. 36-9, C is the center of curvature, 4 m from the mirror, and
F is the principal focus, 2 m from the mirror.

(a) Two of the following three convenient rays from O will locate
the image.

(1) The ray OA, parallel to the principal axis. This ray, like all
parallel rays, is reflected through the principal focus F in the
direction AFA'.



Fig. 36-9

(2) The ray OB, drawn as if it passed through the center of
curvature C. This ray is normal to the mirror and is reflected
back on itself in the direction BCB'.

(3) The ray OFD which passes through the principal focus F and,
like all rays passing through F, is reflected parallel to the
principal axis in the direction DD'.

The intersection I of any two of these reflected rays is the image of
O. Thus II' represents the position and size of the image of OO'.
The image is real, inverted, magnified, and at a greater distance
from the mirror than the object. (Note: If the object were at II', the
image would be at II' and would be real, inverted, and smaller.)

(b) Using the mirror equation in which R = -4 m,

The image is real (since si is positive) and located 6 m from the
mirror. Also, since the image is inverted, both the magnification
and yi are negative:

36.5 [II]    An object OO' is 25 cm from a concave spherical mirror of



radius 80 cm (Fig. 36-10). Determine the position and relative
size of its image II' (a) by construction and (b) by use of the
mirror equation.

Fig. 36-10

(a) Two of the following three rays from O locate the image.

(1) A ray OA, parallel to the principal axis, is reflected through the
focus F, 40 cm from the mirror.

(2) A ray OB, in the line of the radius COB, is normal to the mirror
and is reflected back on itself through the center of curvature C.

(3) A ray OD, which (extended) passes through F, is reflected
parallel to the axis. Because of the large curvature of the mirror
from A to D, this ray is not as accurate as the other two.

The reflected rays (AA', BB', and DD') do not meet, but appear to
originate from a point I behind the mirror. Thus, II' represents the
relative position and size of the image of OO'. The image is virtual
(behind the mirror), erect, and magnified. Here the radius R is
negative and so

The image is virtual (since si is negative) and 66.7 cm behind the
mirror. Also,



Notice that MT is positive and so the image is right-side-up.

36.6 [II]    As shown in Fig. 36-11, an object 6 cm high is located 30 cm in
front of a convex spherical mirror of radius 40 cm. Determine the
position and height of its image, (a) by construction and (b) by use
of the mirror equation.
(a) Choose two convenient rays coming from O at the top of the

object:

    (1) A ray OA, parallel to the principal axis, is reflected in the
direction AA' as if it passed through the principal focus F.

    (2) A ray OB, directed toward the center of curvature C, is
normal to the mirror and is reflected back on itself.

Fig. 36-11

The reflected rays, AA' and BO, never meet but appear to originate
from a point I behind the mirror. Then II' represents the size and
position of the image of OO'.

All images formed by convex mirrors are virtual, erect, and
reduced in size, provided the object is in front of the mirror (i.e., a
real object). For a convex mirror the radius is positive; here R = 40
cm. And so

The image is virtual (si is negative) and 12 cm behind the mirror.



Also,

36.7 [II]    Where should an object be placed, with reference to a concave
spherical mirror of radius 180 cm, to form a real image that is half
the size of the object?

All real images formed by the mirror are inverted and so the
magnification is to be -1/2; hence, si = s0/2. Then, since R = -180
cm,

36.8 [II]    How far must a girl stand in front of a concave spherical mirror of
radius 120 cm to see an erect image of her face four times its
natural size?

The erect image must be virtual; hence, si is negative. Since the
magnification is +4 and MT = -si/s0, it follows that si = -4s0. Then
using R = -120 cm

36.9 [II]    What kind of spherical mirror must be used, and what must be its
radius, in order to give an erect image one-fifth as large as an
object placed 15 cm in front of it?

An erect image produced by a spherical mirror is virtual; hence, si
is negative. Moreover, since the magnification is +1/5, si = -s0/5 =
-15/5 = -3 cm. Because the virtual image is smaller than the
object, a convex mirror is required. Its radius can be found using

36.10 [II]  The diameter of the Sun subtends an angle of approximately 32



minutes (32') at any point on the Earth. Determine the position and
diameter of the solar image formed by a concave spherical mirror of
radius 400 cm. Refer to Fig. 36-12.

Fig. 36-12

Since the sun is very distant, s0 is very large and 1/s0 is practically
zero. So with R = -400 cm

and si = 200 cm. The image is at the principal focus F, 200 cm
from the mirror.

The diameter of the Sun and its image II' subtend equal angles at
the center of curvature C of the mirror. From the figure,

36.11 [II]  A dental technician uses a small mirror that gives a magnification
of 4.0 when it is held 0.60 cm from a tooth. What is the radius of
curvature of the mirror?

In order for the mirror to produce a right-side-up magnified image
it must be concave. Accordingly R is negative.

Because the magnification is positive -si/s0 = 4 and with s0 = -2.4
cm. The mirror equation becomes (in cm)



and R = -1.6 cm. (This agrees with the fact that the image formed
by a convex mirror is diminished, not magnified.)

SUPPLEMENTARY PROBLEMS

36.12 [I]    A lit candle is a perpendicular distance of 20.0 cm from the front
of a flat mirror. (a) Where will its image appear? (b) What kind
of image will it be?

36.13 [I]    A bug 1.0 cm tall is a perpendicular distance of 15.0 cm from the
front of a flat mirror. (a) Where will its image appear? (b) How
tall will the image be? (c) Can the image be projected onto a
screen?

36.14 [I]    You are standing in front of a large vertical plane mirror. If you
jump 1.00 m toward the mirror, what will happen to your image?

36.15 [I]    Imagine that you are standing 10.0 m in front of a large vertical
plane mirror. If you jump 1.00 m toward the mirror, how far apart
will you end up from your image?

36.16 [I]    Now suppose you are in front of a large vertical plane mirror and
running toward it at a constant 5.0 m/s. How fast will you be
approaching your image?

36.17 [I]    If you wish to take a photo of yourself as you stand 3 m in front
of a plane mirror, for what distance should you focus the camera
you are holding?

36.18 [I]    Two plane mirrors make an angle of 90° with each other. A
point-like luminous object is placed between them. How many
images are formed?



36.19 [I]    Two plane mirrors are parallel to each other and spaced 20 cm
apart. A luminous point is placed between them and 5.0 cm from
one mirror. Determine the distance from each mirror of the three
nearest images in each.

36.20 [I]    Two plane mirrors make an angle of 90° with each other. A
beam of light is directed at one of the mirrors, reflects off it and
the second mirror, and leaves the mirrors. What is the angle
between the incident beam and the reflected beam?

36.21 [I]    A ray of light makes an angle of 25° with the normal to a plane
mirror. If the mirror is turned through 6.0°, making the angle of
incidence 31°, through what angle is the reflected ray rotated?

36.22 [I]    A convex spherical mirror has a radius of curvature of magnitude
200 cm. (a) What is the value of R? (b) What is the value of the
mirror’s focal length? [Hint: Study Eq. (36.1) and the sign
convention.]

36.23 [I]    A concave spherical mirror has a radius of curvature of
magnitude 200 cm. (a) What is the value of R? (b) What is the
value of the mirror’s focal length? [Hint: Study Eq. (36.1) and the
sign convention.]

36.24 [I]    Suppose we double the radius of curvature of a concave mirror.
(a) Is it now flatter or more tightly curved? (b) What happens to
the value of the mirror’s focal length? (c) Is the focal length
positive or negative? [Hint: Study Eq. (36.1) and the sign
convention.]

36.25 [I]    An object is very far in front (to the left) of a concave spherical
mirror having a focal length of 200 cm. (a) Roughly where will
the image appear? (b) Describe the image. [Hint: Check out Fig.
36-5.]

36.26 [II]  A spherical concave mirror has a radius of curvature of -400 cm.
An object 2.00 cm tall is on the central axis 400 cm in front of the
mirror. (a) Determine the focal length. (b) Locate the image. (c)



Describe the image. (d) Determine the magnification. [Hint:
Check out Fig. 36-5.]

36.27 [II]    A convex spherical mirror has a focal length of -1.00 m. A
small object is 2.00 m in front of the mirror on its central axis. (a)
Locate the image. (b) Compute the magnification. (c) Describe
the image.

36.28 [II]    Describe the image of a candle flame located 40 cm from a
concave spherical mirror of radius 64 cm.

36.29 [II]    Describe the image of an object positioned 20 cm from a
concave spherical mirror of radius 60 cm.

36.30 [II]    How far should an object be from a concave spherical mirror of
radius 36 cm to form a real image one-ninth its size?

36.31 [II]    An object 7.0 cm high is placed 15 cm from a convex spherical
mirror of radius 45 cm. Describe its image.

36.32 [II]    What is the focal length of a convex spherical mirror which
produces an image one-sixth the size of an object located 12 cm
from the mirror?

36.33 [II]    It is desired to cast the image of a lamp, magnified 5 times,
upon a wall 12 m distant from the lamp. What kind of spherical
mirror is required, and what is its position?

36.34 [II]    Compute the position and diameter of the image of the Moon in
a polished sphere of diameter 20 cm. The diameter of the Moon is
3500 km, and its distance from the Earth is 384 000 km,
approximately.

ANSWERS TO SUPPLEMENTARY PROBLEMS



36.12 [I]    (a) 20.0 cm behind the reflecting surface; (b) virtual

36.13 [I]    (a) 15.0 cm behind the reflecting surface; (b) 1.0 cm; (c) no

36.14 [I]    It will jump 1.00 m toward the surface of the mirror.

36.15 [I]    18.0 m

36.16 [I]     at 10.0 m/s.

36.17 [I]    6 m

36.18 [I]    3

36.19 [I]    5.0, 35, 45 cm; 15, 25, 55 cm

36.20 [I]    180°

36.21 [I]    12°

36.22 [I]    (a) +200 cm; (b) -100 cm

36.23 [I]    (a) -200 cm; (b) +100 cm

36.24 [I]    (a) It is flatter; (b) the focal length is doubled; (c) it is always
positive.

36.25 [I]    (a) just to the left of the focal point, which is 200 cm to the left of
the vertex    (the very center) of the mirror; (b) the image is real,
inverted, and minified, as it should be via Table 36-1.

36.26 [II]  (a) +200 cm; (b) the image is 400 cm to the left of the mirror. A
positive image distance means a real image; (c) notice that the object
is at 2f, which means that the image is real, inverted, and life size, as
it should be via Table 36-1; (d) MT = -1; a negative magnification
means an inverted image.

36.27 [II]  (a) si = -2/3 m; a negative image distance means the image is
virtual, as it should be via Table 36-1; (b) MT = +1/3; it is minified, as



it should be via Table 36-1. A positive magnification means an
upright image; (c) the image is virtual, right-side-up, and minified, as
it should be via Table 36-1.

36.28 [II]    real, inverted, 0.16 m in front of mirror, magnified 4 times

36.29 [II]    virtual, erect, 60 cm behind mirror, magnified 3 times

36.30 [II]    180 cm

36.31 [II]    virtual, erect, 9.0 cm behind mirror, 4.2 cm high

36.32 [II]    -2.4 cm

36.33 [II]    concave, radius 5.0 m, 3.0 m from lamp

36.34 [II]    5.0 cm inside sphere, 0.46 mm



Refraction of Light

The Speed of Light (c) as ordinarily measured varies from material to
material. Light (treated macroscopically) travels fastest in vacuum, where its
speed is c = 2.998 × 108 m/s. Its speed in air is c/1.000 3. In water its speed
is c/1.33, and in ordinary glass it is about c/1.5. Nonetheless, on a
microscopic level, light is composed of photons, and photons exist only at
the speed c. The apparent slowing down in material media arises from the
absorption and re-emission as the light passes from atom to atom.

Index of Refraction (n): The absolute index of refraction of a material is
defined as

For any two materials, the relative index of refraction of material-1, with
respect to material-2, is

where n1 and n2 are the absolute refractive indices of the two materials.

Refraction: When a ray of light is transmitted obliquely through the
boundary between two materials of unlike index of refraction, the ray bends.
This phenomenon, called refraction, is shown in Fig. 37-1. If nt > ni, the ray
refracts as shown in the figure; it bends toward the normal as it enters the
second material. If nt < ni, however, the ray refracts away from the normal.
This would be the situation in Fig. 37-1 if the direction of the incoming ray



were reversed and it entered from below. In either case, the incident and
refracted (or transmitted) rays and the normal all lie in the same plane. The
angles θi and θt in Fig. 37-1 are called the angle of incidence and angle of
transmission (or refraction), respectively.

Fig. 37-1

Snell’s Law: The way in which a ray refracts at an interface between
materials with indices of refraction ni and nt is given by Snell’s Law:

where θi and θr are as shown in Fig. 37-1. Because this equation applies to
light moving in either direction along the line of the ray, a ray of light
follows the same path when its direction is reversed.

Critical Angle for Total Internal Reflection: When light reflects off an
interface where the process is called external reflection; when ni > nt the
process is called external reflection; nt < ni it’s internal reflection. Suppose
that a ray of light passes from a material of higher index of refraction to one
of lower index, as shown in Fig. 37-2. Part of the incident light is refracted
and part is reflected at the interface. Because θt must be larger than θi, it is
possible to make θi large enough so that θt = 90°. This value for θt is called
the critical angle θc. For θi larger than this, no refracted ray can exist; all the
light is reflected.



Fig. 37-2

The condition for total internal reflection θi equal or exceed the critical
angle θc where

Because the sine of an angle can never be larger than unity, this relation
confirms that total internal reflection can occur only if ni > nt

A Prism can be used to disperse light into its various colors, as shown in
Fig. 37-3. Because the index of refraction of a material varies with
wavelength, different colors of light refract differently. In nearly all
materials, red is refracted least and blue is refracted most.

Fig. 37-3

PROBLEM SOLVING GUIDE

All the angles, unless otherwise specified, are always measured with respect
to the normal to the interface. Make sure you still remember how to use the



[sin–1] key on your calculator. When calculating the critical angle, the
incident medium has a greater index than the transmitting medium—
inverting those indices in Eq. (37.4) is a common error. The most important
equation in this chapter is Snell’s Law—memorize it.

SOLVED PROBLEMS

37.1 [I]    The speed of light in water is (3/4)c. What is the effect, on the
frequency and wavelength of light, of passing from vacuum (or
air, to good approximation) into water? Compute the refractive
index of water.

The same number of wave peaks leave the air each second as enter
into the water. Hence, the frequency is the same in the two
materials. But because Wavelength = (Speed)/(Frequency), the
wavelength in water is three fourths that in air.

The (absolute) refractive index of water is

37.2 [I]    A glass plate is 0.60 cm thick and has a refractive index of 1.55.
How long does it take for a pulse of light incident normally to pass
through the plate?

37.3 [I] As is drawn in Fig. 37-4, a ray of light in air strikes a glass plate (n =
1.50) at an incidence angle of 50°. Determine the angles of the
reflected and transmitted rays.



Fig. 37-4

The law of reflection applies to the reflected ray. Therefore, the
angle of reflection is 50°, as shown.

For the refracted ray, ni sinθi = nt sinθt becomes

from which it follows that θt = 31°.

37.4 [I]    The refractive index of diamond is 2.42. What is the critical angle
for light passing from diamond to air?

We use ni sinθi = nt sinθt to obtain

(2.42)sinθc = (1)sin 90°

from which it follows that sinθc = 0.413 and θc = 24.4°.

37.5 [I]     What is the critical angle for light passing from glass (n = 1.54) to
water (n = 1.33)?

37.6 [II]    A layer of oil (n = 1.45) floats on water (n = 1.33). A ray of light



shines onto the oil with an incidence angle of 40.0°. Find the angle
the ray makes in the water. (See Fig. 37-5.)

Fig. 37-5

At the air–oil interface, Snell’s Law gives

nair sin40° = noil sinθoil

At the oil-water interface, we have (using the equality of alternate
angles)

noil sinθoil = nwater sinθwater

Thus, nair sin40.0° = nwater sinθwater; the overall refraction occurs
just as though the oil layer were absent. Solving gives

37.7 [II]    As shown in Fig. 37-6, a small luminous body, at the bottom of a
pool of water (n = 4/3) 2.00 m deep, emits rays upward in all
directions. A circular area of light is formed at the surface of the
water. Determine the radius R of the circle of light.



Fig. 37-6

The circular area is formed by rays refracted into the air. The
angle θc must be the critical angle, because total internal
reflection, and hence no refraction, occurs when the angle of
incidence in the water is greater than the critical angle. We have,
then,

From the figure,

R =(2.00 m) tanθc = (2.00 m)(1.13)= 2.26 m

37.8 [I]    What is the minimum value of the refractive index for a 45.0°
prism, which is used to turn a beam of light by total internal
reflection through a right angle? (See Fig. 37-7.)

Fig. 37-7

The ray enters the prism without deviation, since it strikes side AB
normally. It then makes an incidence angle of 45.0° with normal to



side AC. The critical angle of the prism must be smaller than 45.0°
if the ray is to be totally reflected at side AC and thus turned
through 90°. From ni sinθc = nt sin90° with nt = 1.00,

37.9 [II]    The glass prism shown in Fig. 37-8 has an index of refraction of
1.55. Find the angle of deviation D for the case shown.

Fig. 37-8

No deflection occurs at the entering surface, because the incidence
angle is zero. At the second surface, θi = 30° (because its sides are
mutually perpendicular to the sides of the apex angle). Then,
Snell’s Law becomes

37.10 [III] As shown in Fig. 37-9, an object is at a depth d beneath the
surface of a transparent material of refractive index n. As viewed
from a point almost directly above, how deep does the object
appear to be?



Fig. 37-9

The two rays from A that are shown emerging into the air both
appear to come from point-B. Therefore, the apparent depth is CB.
We have

If the object is viewed from nearly straight above, then angles θi
and θt will be very small. For small angles, the sine and tangent
are nearly equal. Therefore,

But nsinθt = (1)sinθt from which

Hence,

The apparent depth is only a fraction 1/n of the actual depth d.

37.11 [I]     A glass plate 4.00 mm thick is viewed from above through a
microscope. The microscope must be lowered 2.58 mm as the



operator shifts from viewing the top surface to viewing the bottom
surface through the glass. What is the index of refraction of the glass?
Use the results of Problem 37.10.

We found in Problem 37.10 that the apparent depth of the plate
will be 1/n as large as its actual depth. Hence,

This yields n = 1.55 for the glass.

37.12 [III] As shown in Fig. 37-10, a ray enters the flat end of a long
rectangular block of glass that has a refractive index of n2 > 1.414.

Fig. 37-10

The larger θ1 is the larger θ2 will be, and the smaller θ3 will be.
Therefore, the ray is most likely to leak out through the side of the
block if θ1 = 90°. In that case,

n1 sinθ1= n2 sinθ2 becomes (1)(1)= n2 sinθ2

For the ray to just escape, θ4= 90°. Then

n2 sinθ3= n1 sinθ4 becomes n2 sinθ3 = (1)(1)

We thus have two conditions to satisfy: n2 sinθ3= 1 and n2 sinθ3 =
1. Their ratio gives



But we see from the figure that sinθ3 = cosθ2, and so this becomes

tanθ2=1 or θ2= 45.00°

Then, because n2 sinθ2 = 1, we have

This is the smallest possible value the index can have for total
internal reflection of all rays that enter the end of the block. It is
possible to obtain this answer by inspection. How?

SUPPLEMENTARY PROBLEMS

37.13 [I]  The speed of light in a certain glass is 1.91 × 108 m /s. What is the
refractive index of the glass?

37.14 [I]  What is the frequency of light, which has a wavelength in air of
546 nm? What is its frequency in water (n = 1.33)? What is its
speed in water? What is its wavelength in water?

37.15 [I]  A beam of light strikes the surface of water at an incidence angle
of 60°. Determine the directions of the reflected and refracted
rays. For water, n = 1.33.

37.16 [I]  A laser beam is incident in air on the surface of a thick flat sheet
of glass having an index of refraction of 1.500. The beam within
the glass travels at an angle of 35.0° from the normal. Determine
the angle of incidence at the air-glass interface. [Hint: Recall
Snell’s Law. Here θt = 35.0°, and we need to find θi, which
should be greater than that.]



37.17 [I]  A beam of light is incident on the flat surface of a block of
Fabulite (SrTiO3) that is immersed in air. The incident beam in
air is at an angle with respect to the normal of 45.00°. At what
angle does the beam travel within the Fabulite? [Hint: Check out
Table 37-1. Here θi = 45.00°, and we need to find θt, which
should be smaller than that.]

TABLE 37-1
Approximate Indices of Refraction of Various Substances*

37.18 [I]  A narrow beam of light is traveling within a large block of sodium
chloride (NaCl) that is immersed in air. The beam strikes the flat
crystal-air interface making an angle of 25.0° At what angle does
the beam emerge into the surrounding air? [Hint: Check out
Table 37-1. Here θi = 25.0°, and we need to find θt, which should
be greater than that.]

37.19 [I]  A block of lanthanum flint glass is covered by a thick layer of
water. A narrow beam of light in the water arrives at the water-
glass interface at an angle of 40.0° with respect to the normal. At
what angle measured from the normal does the beam progress



into the glass? [Hint: Draw a ray diagram and then check out
Table 37-1. Here θi = 40.0°, and we need to find θt, which should
be less than that.]

37.20 [I]  A thick layer of olive oil, having an index of refraction of 1.47, is
floating on a quantity of pure water. A narrow beam of light in
the oil arrives at the oil-water interface at an angle of 50.0° with
respect to the normal. At what angle measured from the normal
does the beam progress into the water? [Hint: Here θi = 50.0°,
and we need to find θt, which should be greater than that. Since
the indices don’t differ by much, the two angles should be close.]

37.21 [I]  A thick layer of olive oil, having an index of refraction of 1.47, is
floating on a quantity of pure water. A narrow beam of light in
the water arrives at the water-oil interface at an angle of 50.0°
with respect to the normal. At what angle measured from the
normal does the beam progress into the oil? [Hint: Here θi =
50.0°, and we need to find θt, which should be less than that.
Since the indices don’t differ by much, the two angles should be
close.]

37.22 [I]  The critical angle for light passing from rock salt into air is 40.5°.
Calculate the index of refraction of rock salt.

37.23 [I]  What is the critical angle when light passes from glass (n = 1.50)
into air?

37.24 [I]  A thick layer of olive oil, having an index of refraction of 1.47, is
floating on a quantity of pure water. At what minimum angle
must a narrow beam of light in the oil arrive at the oil-water
interface if it is to be totally reflected back into the oil. [Hint:
Study Eq. (37.4) and remember that the sine of an angle must be
equal to or less than 1.00.]

37.25 [I]  A block of polystyrene is covered by a thick layer of water. A
narrow beam of light in the plastic arrives at the plastic-water
interface at the smallest angle such that all the light is reflected



back into the polystyrene. Determine that angle. [Hint: Study Eq.
(37.4) and Table 37-1.]

37.26 [I]  A block of clear ice sits on top of a cube of dense flint glass. A
laser beam traveling in the glass reaches the glass-ice interface at
an angle of 65.0° with respect to the normal. If the beam has an
irradiance of 10.0 W/m2, how much of that light will be reflected
back into the glass? Explain your answer. [Hint: Find θc.]

37.27 [II]  The absolute indices of refraction of diamond and crown glass
are 5/2 and 3/2, respectively. Compute (a) the refractive index of
diamond relative to crown glass and (b) the critical angle between
diamond and crown glass.

37.28 [II]  A pool of water (n = 4/3) is 60 cm deep. Find its apparent depth
when viewed vertically through air.

37.29 [III]  In a vessel, a layer of benzene (n = 1.50) 6 cm deep floats on
water (n = 1.33) 4 cm deep. Determine the apparent distance of
the bottom of the vessel below the upper surface of the benzene
when viewed vertically through air.

37.30 [II]  A mirror is made of plate glass (n = 3/2) 1.0 cm thick and
silvered on the back. A man is 50.0 cm from the front face of the
mirror. If he looks perpendicularly into it, at what distance behind
the front face of the mirror will his image appear to be?

37.31 [II]  A straight rod is partially immersed in water (n = 1.33). Its
submerged portion appears to be inclined 45° with the surface
when viewed vertically through air. What is the actual inclination
of the rod?

37.32 [II]  The index of refraction for a certain type of glass is 1.640 for
blue light and 1.605 for red light. When a beam of white light
(one that contains all colors) enters a plate of this glass at an
incidence angle of 40°, what is the angle in the glass between the
blue and red parts of the refracted beam?



ANSWERS OF SUPPLEMENTARY PROBLEMS

37.13 [I]    1.57

37.14 [I]    549 THz, 549 THz, 2.25 × 108 m/s, 411 nm

37.15 [I]    60° reflected into air, 41° refracted into water

37.16 [I]     θi = 59.4°

37.17 [I]     θt = 17.07°

37.18 [I]     θt = 40.7°

37.19 [I]     θt = 28.4°

37.20 [I]    θt = 57.6°

37.21 [I]     θt = 44.0°

37.22 [I]    1.54

37.23 [I]    41.8°

37.24 [I]    θc = 65.1°

37.25 [I]    θc = 57.0°

37.26 [I]    θi = 52.1°; hence θi = 65.0° > θi, and so all the light (10.0 W/m2)
will be reflected.

37.27 [II]    (a) 5/3; (b) 37°

37.28 [II]    45 cm

37.29 [III]    7 cm



37.30 [II]    51.3 cm

37.31 [II]    arctan 1.33 = 53°

37.32 [II]    0.53°



Thin Lenses

Types of Lenses: As indicated in Fig. 38-1, converging, or positive, lenses
are thicker at the center than at the rim and will converge a beam of parallel
light to a real focus. Diverging, or negative, lenses are thinner at the center
than at the rim and will diverge a beam of parallel light from a virtual focus.
This of course assumes the lens is made of a material whose index of
refraction is greater than that of the surrounding medium.

The principal focus (or focal point) of a thin lens with spherical surfaces
is the point F where rays parallel to and near the central or optical axis are
brought to a focus; this focus is real for a converging lens and virtual for a
diverging lens. The focal length ƒ is the axial distance of the principal focus
from the lens. Because the rays through each lens in Fig. 38-1 can be
reversed without altering their paths, two symmetric focal points exist for
each lens, one on each side (see Fig. 38-3).

Fig. 38-1

Ray Tracing: When a ray passes through a lens it refracts or “bends” at
each interface, as drawn in Fig. 38-1. When dealing with thin lenses all of
the bending can, for simplicity, be assumed to occur along a vertical plane
running down the middle of the lens (see Fig. 38-2).



Fig. 38-2

As in our previous treatment of mirrors (Chapter 36), any two rays
originating from a point on the object, drawn through the system, will locate
the image of that point. There are three especially convenient rays to use
because we know, without making any calculations, exactly how they will
pass through a lens. These rays are shown in Fig. 38-3 propagating through
both a convex and a concave lens. Notice that a ray heading for the center
(C) of a thin lens passes straight through it unbent.



Fig. 38-3

Object and Image Relation for converging and diverging thin lenses:

where so is the object distance from the lens, si is the image distance from
the lens, and f is the focal length of the lens. The lens is assumed to be thin,



and the light rays paraxial (i.e., close to the principal axis). Then, with light
entering from the left,

SIGN CONVENTION

• so is positive when the object is to the left of the lens.
• so is positive for a real object, and negative for a virtual object (see

Chapter 39).
• si is positive when the image is to the right of the lens.
• si is positive for a real image, and negative for a virtual image.
• f is positive for a converging lens, and negative for a diverging lens.
• yi is positive for a right-side-up image (i.e., one above the axis).
• yo is positive for a right-side-up object (i.e., one above the axis).

• MT is negative when the image is inverted.

Converging lenses form inverted real images of real objects when those
objects are located to the left of the focal point, in front of the lens (see Fig.
38-4). When the object is between the focal point and the lens, the resulting
image is virtual (on the same side of the lens as the object), erect, and
enlarged.



Fig. 38-4

Diverging lenses produce only virtual, erect, and minified images of real
objects (see Table 38-1).

TABLE 38-1
Images of real objects formed by thin lenses



Lensmaker’s Equation:

where n is the refractive index of the lens material, and R1 and R2 are the
radii of curvature of the two lens surfaces. This equation holds for all types
of thin lenses. A radius of curvature, R, is positive when its center of
curvature lies to the right of the surface, and negative when its center of
curvature lies to the left of the surface.

If a lens with refractive index n1 is immersed in a material with index n2,
then n in the lensmaker’s equation is to be replaced by n1/n2.

Lens Power in diopters (m-1) is equal to 1/f, where f is the focal length
expressed in meters.

Lenses in Contact: When two thin lenses having focal lengths f1 and f2 are
in close contact, the focal length f of the combination is given by

Quite generally, for lenses in close contact, the power of the combination is
equal to the sum of their individual powers.

PROBLEM SOLVING GUIDE

Be very careful with signs. Memorize the sign convention. Check your
answers with Table 38-1. With a positive lens, if the object is farther away



than f, the image is real and up-side-down. Closer than f, the image is
virtual, right-side-up, and magnified. With a negative lens, the image is
always virtual, right-side-up, and minified.

SOLVED PROBLEMS

38.1 [II]  An object OO′, 4.0 cm high, is 20 cm in front of a thin convex lens
of focal length +12 cm. Determine the position and height of its
image II′ (a) by construction and (b) by computation.

(a) The following two convenient rays from O will locate the
images (see Fig. 38-5).
(1) A ray OP, parallel to the optical axis, must after refraction

pass through the focus F.
(2) A ray passing through the optical center C of a thin lens is

not appreciably deviated. Hence, ray OCI may be drawn as
a straight line.

The intersection I of these two rays is the image of O. Thus, II′
represents the position and size of the image of OO′. The image
is real, inverted, enlarged, and at a greater distance from the
lens than the object. (If the object were at II′, the image at OO′,
would be real, inverted, and smaller.)

Fig. 38-5



The negative magnification and image height both indicate an
inverted image.

38.2 [II]  An object OO′ is 5.0 cm in front of a thin convex lens of focal
length +7.5 cm. Determine the position and magnification of its
image II′ (a) by construction and (b) by computation.

(a) Choose two convenient rays from O, as in Fig. 38-6.
(1) A ray OP, parallel to the optical axis, is refracted so as to

pass through the focus F.
(2) A ray OCN, through the optical center of the lens, is drawn

as a straight line.
These two rays do not meet, but appear to originate from a
point I. Thus, II′ represents the position and size of the image
of OO′.
When the object is between F and C, the image is virtual, erect,
and enlarged, as shown.

Fig. 38-6

Since si is negative, the image is virtual (on the same side of
the lens as the object), and it is 15 cm in front of the lens. Also,

Because the magnification is positive the image is right-side-



up.

38.3 [II]  An object OO′, 9.0 cm high, is 27 cm in front of a thin concave lens
of focal length -18 cm. Determine the position and height of its
image II′ (a) by construction and (b) by computation.

(a) Choose the two convenient rays from O shown in Fig. 38-7.
(1) A ray OP, parallel to the optical axis, is refracted outward

in the direction D as if it came from the principal focus F.
(2) A ray through the optical center of the lens is drawn as a

straight line OC.
Then II′ is the image of OO′. Images formed by concave or

divergent lenses are virtual, erect, and smaller.

Since si is negative, the image is virtual, and it is 11 cm in front
of the lens.

When MT > 0, the image is upright, and the same conclusion
follows from the fact that yi > 0.

Fig. 38-7

38.4 [I]    A converging thin lens (f = 20 cm) is placed 37 cm in front of a
screen. Where should the object be placed if its image is to appear
on the screen?

We know that si = +37 cm and f = +20 cm. The lens equation



gives

from which s0 = 43.5 cm. The object should be placed 44 cm from
the lens.

38.5 [II]  Compute the position and focal length of the converging thin lens,
which will project the image of a lamp, magnified 4 times, upon a
screen 10.0 m from the lamp.

Here so + si = 10.0. Moreover, MT = si/s0, but all such real images
are inverted, hence MT = -4. And so si = 4s0 = 2.0 m and si = 8.0
m. Then

38.6 [II]  In what two positions will a converging thin lens of focal length
+9.00 cm form images of a luminous object on a screen located
40.0 cm from the object?

Given s0 + si = 40.0 cm and f = +9.00 cm, we have

The use of the quadratic formula gives

from which s0 = 13.7 cm and s0 = 26.3 cm. The two lens positions
are 13.7 cm and 26.3 cm from the object.

38.7 [II]  A converging thin lens with 50-cm focal length forms a real image
that is 2.5 times larger than the object. How far is the object from
the image?



Real images formed by single converging lenses are all inverted.
Accordingly, MT = si/s0 = -2.5 and so si = 2.5s0. Therefore,

This gives si = (2.5)(70 cm) = 175 cm. So the required distance is

si/s0 = 70 cm + 175 cm = 245 cm = 2.5 m

38.8 [II]  A thin lens of focal length f projects upon a screen the image of a
luminous object magnified N times. Show that the lens distance
from the screen is (N + 1)f.

The image is real, since it can be shown on a screen, and so si > 0.
We then have

38.9 [II]  A thin lens has a convex surface of radius 20 cm and a concave
surface of radius 40 cm and is made of glass of refractive index
1.54. Compute the focal length of the lens, and state whether it is a
converging or a diverging lens.

First, notice that R1 > 0 and R2 > 0 because both surfaces have
their centers of curvature to the right. Consequently,

Since f turns out to be positive, the lens is converging.

38.10 [II] A thin double convex lens has faces of radii 18 and 20 cm. When
an object is 24 cm from the lens, a real image is formed 32 cm
from the lens. Determine (a) the focal length of the lens and (b)
the refractive index of the lens material.

Remember that a convex lens has a positive focal length.



38.11 [II] A thin glass lens (n = 1.50) has a focal length of +10 cm in air.
Compute its focal length in water (n = 1.33).

Divide one equation by the other to obtain f = 5.0/0.128 = 39 cm.

38.12 [III] A double convex thin lens has radii of 20.0 cm. The index of
refraction of the glass is 1.50. Compute the focal length of this
lens (a) in air and (b) when it is immersed in carbon disulfide (n
= 1.63).

For a thin lens with an index of n1, immersed in a surrounding
medium of index n2,

Here R1 = +20.0 cm and R2 = -20.0 cm and so



When n2 > n1 the focal length is negative and the lens is a
diverging lens.

38.13 [I]  Two thin lenses, of focal lengths +9.0 and -6.0 cm, are placed in
contact. Calculate the focal length of the combination.

The combination lens is diverging.

38.14       An achromatic lens is formed from two thin lenses in contact,
having powers of +10.0 diopters and -6.0 diopters. Determine the
power and focal length of the combination.

Since reciprocal focal lengths add,

SUPPLEMENTARY PROBLEMS

38.15 [I] Draw diagrams to indicate qualitatively the position, nature, and
size of the image formed by a converging lens of focal length f for
the following object distances: (a) infinity, (b) greater than 2f, (c)
equal to 2f, (d) between 2f and f, (e) equal to f, (f) less than f.

38.16 [I] A thin lens has a focal length of +20.0 cm. An object is placed 300
m in front of the lens. Roughly where will the image be formed?
Explain your answer.

38.17 [I] An object is very far from the front of a thin converging lens. As
the object approaches the lens, still farther than one focal length
from it, what happens to the size of the image?

38.18 [I] You are designing a copy machine using a positive lens with a
15.0-cm focal length. Where should the input page be located with
respect to the lens in order to produce exact copies? Explain your



answer.

38.19 [I] Show that for a thin positive lens

38.20 [I] Where must an object be located with respect to a thin positive
lens of focal length 300 cm if its image is to be real and magnified?

38.21 [I] A bug on the central axis is 300 cm from a thin positive lens of
focal length 60.0 cm. Where will its image be formed? Describe
that image. [Hint: Use Eq. (38.1), the Thin Lens Equation.]

38.22 [I] Considering the bug in the previous problem, what was the
magnification of the image? Does your answer agree with the
answers to the previous problem? [Hint: Use Eq. (38.2).]

38.23 [I] Where should an object be placed in front of a thin converging
lens of focal length 100 cm if the image is to be 200 cm behind the
lens? Explain your answer. Describe the image.

38.24 [I] Where should an object be placed in front of a thin converging
lens of focal length 100 cm if the image is to be 400 cm behind the
lens? Discuss your answer. Describe the image.

38.25 [I] A 1.0-cm-tall object is placed in front of a thin converging lens of
focal length 200 cm. The resulting image is right-side-up and 2.0
cm tall. Roughly locate and then describe the image. Determine the
magnification. Explain your answer.

38.26 [I] A 1.0-cm-tall object is placed in front of a thin converging lens of
focal length 200 cm. The image is right-side-up and 2.0 cm tall.
Write an expression for the image distance in terms of the object
distance. [Hint: Study Eq. (38.2).]

38.27 [I] Where should a 1.0-cm-tall object be placed in front of a thin
converging lens of focal length 200 cm if the image is to be right-
side-up and 2.0 cm tall? Discuss your answer. Describe the image.
[Hint: Study the previous two problems.]

38.28 [I] What is the separation between the object and its image formed by
a positive lens when the image is real and twice the size of the
object? Give your answer in terms of 25.0 cm. [Hint: Find the



magnification.]

38.29 [I] An object on the central axis is 200 cm from the vertex of a thin
negative lens having a focal length of 25.0 cm. Locate and describe
the image. [Hint: Check with Table 38-1.]

38.30 [I] We have a thin negative lens with a focal length of −1.40 m. An
object is placed on the central axis 200 cm from the lens. If the
object is 2.00 cm tall, how tall is the image? Locate and describe
the image. [Hint: Find si; then find the magnification. Check with
Table 38-1.]

38.31 [I] Determine the nature, position, and transverse magnification of the
image formed by a thin converging lens of focal length +100 cm
when the object distance from the lens is (a) 150 cm, (b) 75.0 cm.

38.32 [II] Determine the two locations of an object such that its image will
be enlarged 8.0 times by a thin lens of focal length +4.0 cm.

38.33 [II] What are the nature and focal length of the thin lens that will form
a real image having one-third the dimensions of an object located
9.0 cm from the lens?

38.34 [II] Describe fully the image of an object that is 10 cm high and 28
cm from a diverging lens of focal length -7.0 cm.

38.35 [II] Compute the focal length of a lens that will give an erect image
10 cm from the lens when the object distance from the lens is (a)
200 cm, (b) very great.

38.36 [II] A luminous object and a screen are 12.5 m apart. What are the
position and focal length of the lens that will throw upon the
screen an image of the object magnified 24 times?

38.37 [II] A plano-concave lens has a spherical surface of radius 12 cm, and
its focal length is -22.2 cm. Compute the refractive index of the
lens material.

38.38 [II] A convex-concave lens has faces of radii 3.0 and 4.0 cm,
respectively, and is made of glass of refractive index 1.6.
Determine (a) its focal length and (b) the linear magnification of
the image when the object is 28 cm from the lens.



38.39 [II] A double convex glass lens (n = 1.50) has faces of radius 8 cm
each. Compute its focal length in air and when immersed in water
(n = 1.33).

38.40 [II] Two thin lenses, of focal lengths +12 and -30 cm, are in contact.
Compute the focal length and power of the combination.

38.41 [II] What must be the focal length of a third thin lens, placed in close
contact with two thin lenses of 16 cm and -23 cm focal length, to
produce a lens with -12 cm focal length?

ANSWERS OF SUPPLEMENTARY PROBLEMS

38.16 [I] just to the right of the focal point. When the object is at infinity,
the image will be at F.

38.17 [I] It increases steadily.

38.18 [I] For life-size images, s0 = 2f = 30.0 cm from the lens.

38.19 [I] Start with Eq. (38.1).

38.20 [I] between 2f and f; that is, between 600 cm and 300 cm

38.21 [I] 75 cm; s0 is well beyond 2f, so the image is minified, real, and
inverted.

38.22 [I] −0.25; the minus sign tells us that the image is inverted; that MT <
1 says it’s minified.

38.23 [I] 200 cm; the image is at 2f, so the object must be at 2f; real,
inverted size

38.24 [I] 133 cm; the object is between f and 2f, so the image is beyond 2f;
real, magnified, inverted

38.25 [II] To be right-side-up, the image formed by a positive lens must be
virtual; the magnification is +2; the image is to the left of the lens.

38.26 [I] si = −2s0



38.27 [I] f = 2s0; s0 = 100 cm; when f > s0, we get a virtual erect image.

38.28 [I] MT = −2; s0 + si = 3s0

38.29 [I] −22.2 cm; virtual because si is negative; upright and minified
because all such images are minified

38.30 [I] si = −0.823 5 m; MT = +0.412; image is 0.824 cm tall.

38.31 [I] (a) real, inverted, 300 cm beyond lens, 2:1; (b) virtual, erect, 300
cm in front of lens, 4:1

38.32 [II] 4.5 cm from lens (image is real and inverted), 3.5 cm from lens
(image is virtual and erect)

38.33 [II] converging, +2.3 cm

38.34 [II] virtual, erect, smaller, 5.6 cm in front of lens, 2.0 cm high

38.35 [II] (a) -11 cm; (b) -10 cm

38.36 [II] 0.50 m from object, +0.48 m

38.37 [II] 1.5

38.38 [II] (a) +20 cm; (b) 2.5:1

38.39 [II] +8 cm, +0.3 m

38.40 [II] +20 cm, +5.0 diopters

38.41 [II] -9.8 cm



Optical Instruments

Combination of Thin Lenses: To locate the image produced by two lenses
acting in combination, (1) compute the position of the intermediate image
produced by the first lens alone, disregarding the second lens; (2) then
consider this image as the object for the second lens, and locate its image as
produced by the second lens alone. This latter image is the required image.

If the intermediate image formed by the first lens alone is computed to be
behind the second lens, then that image is a virtual object for the second
lens, and its distance from the second lens is considered negative.

The Eye uses a variable-focus lens to form an image on the retina at the rear
of the eye. The near point of the eye, represented by dn, is the closest
distance to the eye from which an object can be viewed clearly. For the
normal eye, dn is about 25 cm. Farsighted persons can see distinctly only
objects that are far from the eye; nearsighted persons can see distinctly only
objects that are close to the eye.

Angular Magnification (MA), also sometimes called the magnifying
power, is the ratio of the respective angles subtended by the images on the
retina with and without the instrument in place (see Fig. 39-1).

A Magnifying Glass is a converging lens used so that it forms an erect,
enlarged, virtual image of an object placed inside its focal point (i.e., at a
distance less than one focal length from the lens). The angular magnification
due to a magnifier with a focal length f (where the lens is close to the eye) is
(dn/f) + 1 if the image it casts is at the near point [Fig. 39-1(b)].
Alternatively, if the image is at infinity, for relaxed viewing, the angular



magnification is dn/f.

A Microscope that consists of two converging lenses, an objective lens
(focal length f0) and an eyepiece lens (fE), has an angular magnification of:

where si0 is the distance from the objective lens to the intermediate image it
forms. This equation holds when the final image is at the near point, dn = 25
cm.

A Telescope that has an objective lens (or mirror) with a focal length, f0,
and an eyepiece with focal length, fE, produces a magnification MA = −f0/fE .

Fig. 39-1

Eyeglasses: It is customary in physiological optics to work with the



dioptric power of lenses. That’s simply the reciprocal of the focal length in
meters, and so it has the units of inverse meters, or diopters (D): 1 m-1 = 1
D. The shorter the focal length, the more the rays are bent, and the greater is
the dioptric power of the lens. The human eye has a power of about +59 D.
Suppose then that a farsighted person with a near point at, say, 50 cm,
instead of 25 cm, is to acquire a pair of reading glasses. The eye does not
have enough convergence. The person’s near point has to be pulled inward
with a lens that adds convergence to the rays. In other words, the glasses
must take a page at s0 = 25 cm and image it right-side-up at si = -50 cm in
front of the lens so that this particular person can then see it clearly. That
means each lens must work like a magnifying glass creating a virtual image.
The text must be held within 1.00 focal length of the lens.

By contrast a nearsighted person cannot see objects clearly if they are
beyond a point called the far point, which should be at infinity but isn’t.
Such a person needs eyeglasses that will move his or her far point out to
infinity; that requires a negative lens that adds divergence to the rays. In
other words, the essentially parallel rays from an object at infinity must be
made to appear to diverge from the far point. The nearsighted eye has too
much convergence.

PROBLEM SOLVING GUIDE

You must compute dioptric power in inverse meters, not in inverse
centimeters, so it’s a good idea to work in meters when dealing with
eyeglasses. Remember that eyeglasses must create an image that is to the
left of the lens.

SOLVED PROBLEMS

39.1 [II]  A nearsighted person named George cannot see distinctly objects
beyond 80 cm from the eye. What is the power in diopters of the
spectacle lenses that will enable him to see distant objects clearly?

The image, which must be right-side-up, must be on the same side
of the lens as the distant object (hence, the image is virtual and si =



-80 cm), and nearer to the lens than the object (hence, diverging or
negative lenses are indicated). Keep in mind that for virtual
images formed by a concave lens s0 > |si|. As the object is at a
great distance, s0 is very large and 1/s0 is practically zero. Then

39.2 [II]  A farsighted person named Amy cannot see clearly objects closer to
the eye than 75 cm. Determine the power of the spectacle lenses
which will enable her to read type at a distance of 25 cm.

The image, which must be right-side-up, must be on the same side
of the lens as the type (hence, the image is virtual and si = 75 cm),
and farther from the lens than the type (hence, converging or
positive lenses are prescribed). Keep in mind that for virtual
images formed by a convex lens |si|>s0. We have

39.3 [II]  A single thin projection lens of focal length 30 cm throws an image
of a 2.0 cm × 3.0 cm slide onto a screen 10 m from the lens.
Compute the dimensions of the image.

The image is real and so si > 0:

The magnification is negative because the image is inverted. The
length and width of the slide are each magnified 32 times, so

Size of image = (32 × 2.0 cm) × (32 × 3.0 cm) = 64 cm × 96 cm



39.4 [II]  An old camera produces a clear image of a distant landscape when
the thin lens is 8 cm from the film. What adjustment is required to
get a good photograph of a map placed 72 cm from the lens?

When the camera is focused for distant objects (for parallel rays),
the distance between lens and film is the focal length of the lens,
namely, 8 cm. For an object 72 cm distant:

The lens should be moved farther away from the film a distance of
(9 - 8) cm = 1 cm.

39.5 [II]  With a given illumination and film, the correct exposure for a
camera lens set at f/12 is (1/5) s. What is the proper exposure time
with the lens working at f/4?

A setting of f/12 means that the diameter of the opening, or stop,
of the lens is 1/12 of the focal length; f/4 means that it is 1/4 of the
focal length.

The amount of light passing through the opening is proportional to
its area, and therefore to the square of its diameter. The diameter
of the stop at f/4 is three times that at f/12, so 32 = 9 times as much
light will pass through the lens at f/4, and the correct exposure at
f/4 is

(1/9)(exposure time at f/12) = (1.45)s

39.6 [II]  An engraver who has normal eyesight uses a converging lens of
focal length 8.0 cm, which he holds very close to his eye. At what
distance from the work should the lens be placed, and what is the
magnification of the lens?

Method 1

When a converging lens is used as a magnifying glass, the object
is between the lens and the focal point. The virtual erect, and



enlarged image forms at the distance of distinct vision, 25 cm
from the eye. For a virtual image si < 0. Thus,

Method 2

By the formula,

Note that in this simple case MT = MA.

39.7 [III] Two positive lenses, having focal lengths of +2.0 cm and +5.0 cm,
are 14 cm apart as shown in Fig. 39-2. An object AB is placed 3.0
cm in front of the +2.0 lens. Determine the position and
magnification of the final image A"B" formed by this combination
of lenses.

Fig. 39-2

To locate image A'B' formed by the +2.0 lens alone:

The image A'B' is real, inverted, and 6.0 cm beyond the +2.0 lens.

To locate the final image A"B": The image A'B' is (14 - 6.0) cm =
8.0 cm in front of the +5.0 lens and is taken as a real object for the



+5.0 lens.

A"B" is real, erect, and 13 cm from the +5 lens. Then,

Note that the magnification produced by a combination of lenses
is the product of the individual magnifications.

39.8 [II]  In the compound microscope shown in Fig. 39-3, the objective and
eyepiece have focal lengths of +0.80 and +2.5 cm, respectively.
The real intermediate image A'B' formed by the objective is 16 cm
from the objective. Determine the total magnification if the eye is
held close to the eyepiece and views the virtual image A"B" at a
distance of 25 cm.

Fig. 39-3

Method 1

Let so0 = Object distance from the objective

      so0 = Real-image distance from the objective



and so the objective produces the linear magnification

The intermediate image is inverted. The magnifying power of the
eyepiece is

The eyepiece does not flip the image: the intermediate image is
inverted and the final image is inverted. Therefore, the magnifying
power of the instrument is -19 × 11 = -2.1 × 102.

Alternatively, under the conditions stated, the magnifying power
of the eyepiece can be found as

Method 2

From Eq. (39.2) with sio = 16 cm,

39.9 [III] The telephoto lens shown in Fig. 39-4 consists of a converging lens
of focal length +6.0 cm placed 4.0 cm in front of a diverging lens
of focal length -2.5 cm. (a) Locate the image of a very distant
object. (b) Compare the size of the image formed by this lens
combination with the size of the image that could be produced by
the positive lens alone.



Fig. 39-4

(a) If the negative lens were not employed, the intermediate image
AB would be formed at the focal point of the +6.0 lens, 6.0 cm
distant from the +6.0 lens. The negative lens decreases the
convergence of the rays refracted by the positive lens and
causes them to focus at A'B' instead of AB.

The image AB (that would have been formed by the +6.0 lens
alone) is 6.0 - 4.0 = 2.0 cm beyond the -2.5 lens and is taken as
the (virtual) object for the -2.5 lens. Then so = -2.0 cm (negative
because AB is virtual), and

The final image A'B' is real and 10 cm beyond the negative lens.

so the diverging lens increases the magnification by a factor of
5.0.

Notice that the magnification produced by the convex lens is
negative and so the net magnification of both lenses is negative:
the final image is inverted.

39.10 [II] A microscope has two interchangeable objective lenses (3.0 mm
and 7.0 mm) and two interchangeable eyepieces (3.0 cm and 5.0
cm). What magnifications can be obtained with the microscope if
it is adjusted so that the image formed by the objective is 17 cm
from that lens?



Because sio = 17 cm the magnification formula for a
microscope, with dn = 25 cm, gives the following possibilities
for MA:

39.11 [I]  Compute the magnifying power of a telescope, having objective
and eyepiece lenses of focal lengths +60 and +3.0 cm,
respectively, when it is focused for parallel rays.

The image is inverted.

39.12 [II] Reflecting telescopes make use of a concave mirror, in place of the
objective lens, to bring the distant object into focus. What is the
magnifying power of a telescope that has a mirror with 250 cm
radius and an eyepiece whose focal length is 5.0 cm?

As it is for a refracting telescope (i.e., one with two lenses), MA =
−fO/fE again applies where, in this case, fO = −R/2 = 125 cm and fE
= 5.0 cm. Thus, MA = -25.

39.13 [III] As shown in Fig. 39-5, an object is placed 40 cm in front of a
converging lens that has f = +8.0 cm. A plane mirror is 30 cm
beyond the lens. Find the positions of all images formed by this
system.

For the lens

This is image A'B' in the figure. It is real and inverted.



Fig. 39-5

A'B' acts as an object for the plane mirror, 20 cm away. A virtual
image CD is formed 20 cm behind the mirror.

Light reflected by the mirror appears to come from the image at
CD. With CD as object, the lens forms an image of it to the left of
the lens. The distance si from the lens to this latter image is given
by

The real images are therefore located 10 cm to the right of the lens
and 9.5 cm to the left of the lens. (This latter image is upright.) A
virtual inverted image is found 20 cm behind the mirror.

SUPPLEMENTARY PROBLEMS

39.14 [I] Two thin lenses having focal lengths of +200 cm and -400 cm are
glued together so as to have a common axis. Determine the dioptric
power of the combination. Discuss the physics of your answer.
[Hint: Go back to Eq. (38.4), and then study the definition of
dioptric power.]

39.15 [I] A farsighted person who needs glasses can read without them
when holding a text at 74 cm from the eye instead of the more
usual 25 cm. What eyeglass prescription does this person need?
Discuss your answer.

39.16 [I] A farsighted person who needs glasses can read without them



when holding a text at 74 cm from the eye instead of the more
usual 25 cm. If he or she puts on a pair of glasses having a dioptric
power of 3.0 D, where will the new near point be? Discuss your
answer. [Hint: Use Eq. (38.1) and remember that the image
distance must be negative; here it’s -0.74 m. The object distance is
then the near point in meters.]

39.17 [I] A nearsighted person cannot see anything beyond 2.2 m very
clearly. What eyeglass prescription does this person need? Discuss
your answer. [Hint: Use Eq. (38.1) and remember that the image
distance must be negative; here it’s -2.2 m. The object distance is
infinity.]

39.18 [I] A farsighted person wears eyeglasses that provide a dioptric power
of +3.5 D. How far from his or her eyes must a book be held if it is
to be read without using these glasses? Discuss your answer. [Hint:
Use Eq. (38.1) and remember that the image distance must be
negative. Calculate the positive focal length of the lens. With
glasses an object at 25 cm appears to be at si, the near point, where
it can be clearly seen by the eye.]

39.19 [I] Redo the previous problem for someone wearing eyeglasses with a
dioptric power of +2.0.

39.20 [II] A farsighted woman cannot see objects clearly that are closer to
her eye than 60.0 cm. Determine the focal length and power of the
spectacle lenses that will enable her to read a book at a distance of
25.0 cm.

39.21 [II] A nearsighted man cannot see objects clearly that are beyond 50
cm from his eye. Determine the focal length and power of the
glasses that will enable him to see distant objects clearly.

39.22 [II] A projection lens is employed to produce 2.4 m × 3.2 m pictures
from 3.0 cm × 4.0 cm slides on a screen that is 25 cm from the
lens. Compute its focal length.

39.23 [II] A camera gives a life-size picture of a flower when the thin lens is
20 cm from the film. What should be the distance between lens
and film to photograph a flock of birds high overhead?

39.24 [II] What is the maximum stop rating of a camera lens having a focal



length of +10 cm and a diameter of 2.0 cm? If the correct
exposure at f/6 is (1/90) s, what exposure is needed when the
diaphragm setting is changed to f/9?

39.25 [I] What is the magnifying power of a lens of focal length +2.0 cm
when it used as a magnifying glass (or simple microscope)? The
lens is held close to the eye, and the virtual image forms at the
distance of distinct vision, 25 cm from the eye.

39.26 [II] When the object distance from a converging lens is 5.0 cm, a real
image is formed 20 cm from the lens. What magnification is
produced by this lens when it is used as a magnifying glass, the
distance of most distinct vision being 25 cm?

39.27 [II] In a compound microscope, the focal lengths of the objective and
eyepiece are +0.50 cm and +2.0 cm, respectively. The instrument
is focused on an object 0.52 cm from the objective lens. Compute
the magnifying power of the microscope if the virtual image is
viewed by the eye at a distance of 25 cm.

39.28 [II] A refracting astronomical telescope has a magnifying power of
150 when adjusted for minimum eyestrain. Its eyepiece has a
focal length of +1.20 cm. (a) Determine the focal length of the
objective lens. (b) How far apart must the two lenses be so as to
project a real image of a distant object on a screen 12.0 cm from
the eyepiece?

39.29 [III] The large telescope at Mt. Palomar has a concave objective
mirror diameter of 5.0 m and radius of curvature 46 m. What is
the magnifying power of the instrument when it is used with an
eyepiece of focal length 1.25 cm?

39.30 [II] An astronomical telescope with an objective lens of focal length
+80 cm is focused on the moon. By how much must the eyepiece
be moved to focus the telescope on an object 40 meters distant?

39.31 [II] A lens combination consists of two lenses with focal lengths of
+4.0 cm and +8.0 cm, which are spaced 16 cm apart. Locate and
describe the image of an object placed 12 cm in front of the +4.0-
cm lens.

39.32 [II] Two lenses, of focal lengths +6.0 cm and -10 cm, are spaced 1.5



cm apart. Locate and describe the image of an object 30 cm in
front of the +6.0-cm lens.

39.33 [II] A telephoto lens consists of a positive lens of focal length +3.5
cm placed 2.0 cm in front of a negative lens of focal length -1.8
cm. (a) Locate the image of a very distant object. (b) Determine
the focal length of the single lens that would form as large an
image of a distant object as is formed by this lens combination.

39.34 [II] An opera glass has an objective lens of focal length +3.60 cm and
a negative eyepiece of focal length -1.20 cm. How far apart must
the two lenses be for the viewer to see a distant object at 25.0 cm
from the eye?

39.35 [II] Repeat Problem 39.13 if the distance between the plane mirror
and the lens is 8.0 cm.

39.36 [II] Solve Problem 39.13 if the plane mirror is replaced by a concave
mirror with a 20 cm radius of curvature.

ANSWERS TO SUPPLEMENTARY PROBLEMS

39.14 [I] 0.25 D; a stronger (shorter focal length) positive lens added to a
weaker negative lens yields a positive combination.

39.15 [I] 2.0 D; sO = +25 cm, si = -50 cm, and f = 50 cm; the glasses
produce a virtual image in front of the lenses.

39.16 [I] 23 cm; the focal length of each lens is 0.333 m or 33 cm, so the
object at 23 cm would be within 1.00 focal length as necessary.

39.17 [I] -0.45 D; with the object at infinity, f = −2.2m.

39.18 [I] si = -2.0 m; the minus sign tells us the image is virtual, as it must
be to be right-side-up.

39.19 [I] = -0.50 m = -50 cm; the minus sign tells us the image is virtual, as
it must be to be right-side-up.

39.20 [II] +42.9 cm, +2.33 diopters



39.21 [II] -50 cm, -2.0 diopters

39.22 [II] 31 cm

39.23 [II] 10 cm

39.24 [II] f/5, (1/40) s

39.25 [I] 14

39.26 [II] 7.3

39.27 [II] 3.4 × 102

39.28 [II] (a) +180 cm; (b) 181 cm

39.29 [III] 1.8 × 103

39.30 [II] 1.6 cm

39.31 [II] 40 cm beyond +8.0 lens, real, erect

39.32 [II] 15 cm beyond negative lens, real, inverted, 5/8 as large as the
object

39.33 [II] (a) real image 9.0 cm in back of negative lens; (b) +21 cm

39.34 [II] 2.34 cm

39.35 [II] at 6.0 cm (real) and 24 cm (virtual) to the right of the lens

39.36 [II] at 10 cm (real, inverted), 10 cm (real, upright), -40 cm (real,
inverted) to the right of the lens



Interference and Diffraction of Light

A Propagating Wave is a self-sustaining disturbance of a medium that
carries energy and momentum from one location to another. All such waves
are ultimately associated with the motion of an underlying distribution of
particles.

Coherent Waves (be they light, sound, or disturbances on a string) are
waves that have the same form, the same frequency, and a fixed phase
difference (i.e., the amount by which the peaks of one wave lead or lag
those of the other wave does not change with time).

The Relative Phase of two coherent waves traveling along the same line
specifies their relative positions on the line. If the crests of one wave fall on
the crests of the other, the waves are completely in-phase. If the crests of
one fall on the troughs of the other, the waves are 180° (or one-half
wavelength) out-of-phase. Two waves can be out of phase by any amount
greater than zero up to and including 180°.

Interference Effects occur when two or more coherent waves overlap. If
two coherent waves of the same amplitude are superposed, total destructive
interference (cancellation, or in the case of light, darkness) occurs when the
waves are 180° out-of-phase. Total constructive interference
(reinforcement, or in the case of light, brightness) occurs when they are in-
phase.

Perhaps the most fundamental arrangement for producing and studying
interference is Young’s experiment (also known as double-beam
interference), depicted in Fig. 40-1. The sources S, S1, and S2 are either
small holes, or better yet, narrow slits perpendicular to the page. With slits,



a cylindrical wave from S illuminates both S1 and S2 so that they, in turn, act
as in-phase sources of coherent waves that propagate on to the observing
screen Σo. How these waves interact when they arrive at some point P on the
screen is determined by their relative phase. The path from S1 to P, call it r1,
minus the path from S2 to P, call it r2, determines the phase difference. And
since r1 − r2 = a sin θ, and for small angles sin θ ≈ tan θ = y/s ≈ θ,

The waves, of wavelength λ0 in air, arrive at P in phase and interfere
constructively when

where m = 0, ±1, ±2, . . . The zeroth fringe (m = 0) is the central one. Thus
maxima (i.e., bright bands) appear at locations

Fig. 40-1

Diffraction refers to the deviation from straight-line propagation that occurs
when a wave passes beyond a partial obstruction. It usually corresponds to
the bending or spreading of waves around the edges of apertures and
obstacles. The simplest form of the diffraction of light is far-field or



Fraunhofer diffraction. It is observed on a screen that is far away from the
aperture or obstacle which is obstructing an incident stream of plane waves.
Diffraction places a limit on the size of details that can be observed
optically.

Single-Slit Fraunhofer Diffraction: When parallel rays of light of
wavelength λ are incident normally upon a slit of width D, a diffraction
pattern is observed beyond the slit. On a far-away screen, complete darkness
is observed at angles θm' to the straight-through beam, where

Here, m' = ±1, ±2, ±3, is the order number of the diffraction dark band (or
minimum). The pattern consists of a broad central bright band flanked on
both sides by an alternating succession of faint narrow light and dark bands
(m' = ±1, ±2, etc.).

Limit of Resolution of two objects due to diffraction: If two objects are
viewed through an optical instrument, the diffraction patterns caused by the
aperture of the instrument limit our ability to distinguish the objects from
each other. For distinguishability, the angle θ subtended at the aperture by
the objects must be larger than a critical value θcr, given by

where D is the diameter of the circular aperture of the instrument (be it an
eye, telescope, or camera).

Diffraction Grating Equation: A diffraction grating is a repetitive array
of apertures or obstacles that alters the amplitude or phase of a wave. It
usually consists of a large number of equally spaced, parallel slits or ridges;
the distance between slits is the grating spacing a. When waves of
wavelength λ are incident normally upon a grating with spacing a, maxima
are observed beyond the grating at angles θm to the normal, where

Here, m = 0, ±1, ±2, ±3, … is the order number of the diffracted image.
Usually there will be a bright central undeviated band of colored light (m =



0) flanked on either side by blackness and then another band of colored light
(m = ±1), and so on. These are known as the zeroth order spectrum, the first
order spectrum, and so forth.

This same relation applies to the major maxima in the interference
patterns of even two and three slits. In these cases, however, the maxima are
not nearly so sharply defined as for a grating consisting of hundreds or
thousands of slits. The pattern may become quite complex if the slits are
wide enough so that the single-slit diffraction pattern from each slit shows
several minima.

The Diffraction of X-Rays of wavelength λ by reflection from a crystal is
described by the Bragg equation. Strong reflections are observed at grazing
angles φm (where φ is the angle between the face of the crystal and the
reflected beam) given by

where d is the distance between reflecting planes in the crystal, and m = 1, 2,
3, … is the order of reflection.

Optical Path Length: In the same time that it takes a beam of light to travel
a distance d in a material of index of refraction n, the beam would travel a
distance nd in a vacuum. For this reason, nd is defined as the optical path
length of the material.

PROBLEM SOLVING GUIDE

In interference, there is an inverse relationship between the separation
between two apertures and the size of the resulting fringe pattern. The
apertures themselves are always negligibly small: tiny holes, narrow slits.
When the aperture size is significant, we have diffraction, and there is an
inverse relationship between the hole size and the size of the fringe pattern
produced by it. It’s helpful to keep that in mind as you work some of the
problems.

SOLVED PROBLEMS



40.1 [II]  Figure 40-2 shows a thin film of a transparent material of thickness
d and index nf where n2 > nf > n1. For what three smallest film
thicknesses will reflected light rays-1 and -2 interfere totally (a)
constructively and (b) destructively? Assume the monochromatic
light has a wavelength in the film of 600 nm.

Fig. 40-2

Because n2 > nf > n1 each reflection is at the interface with a more
optically dense medium and so each is an external reflection.
Accordingly, the two rays will not experience a relative phase shift
due to the reflections.

(a) Ray-2 travels a distance of roughly 2d farther than ray-1. The
rays reinforce if this distance is 0, λ, 2λ, 3λ, …, mλ, where m is
an integer. Hence, for reinforcement,

The three smallest values for d are 0, 300 nm, and 600 nm.
(b) The waves cancel if they are 180° out-of-phase. This occurs

when 2d is , …, , …, with m an
integer. Therefore, for cancellation,

The three smallest values for d, that is, the ones corresponding
to m = 0, 1, and 2 are 150 nm, 450 nm, and 750 nm,
respectively.



40.2 [III] Two narrow, horizontal, parallel slits (a distance a = 0.60 mm
apart) are illuminated by a beam of 500-nm light as shown in Fig.
40-3. Light that is diffracted at certain angles θ reinforces; at
others, it cancels. Find the three smallest values for θ at which (a)
reinforcement occurs and (b) cancellation occurs. (See Fig. 40-1.)

Fig. 40-3

The difference in path lengths for the two beams is (r1−r2). From
Fig. 40-3:

(a) For reinforcement, (r1-r2) = 0, ±λ, ±2λ, …, and so sinθm =
mλ/a, where m = 0, ±1, ±2,… The corresponding three smallest
values for θm are found using

(b) For cancellation, ),… and
so , where m' = ±1, ±3, ±5, … The
corresponding three smallest values for θm' are found using



40.3 [II]  Monochromatic light from a point source illuminates two narrow,
horizontal, parallel slits. The centers of the two slits are a = 0.80
mm apart, as shown in Fig. 40-1. An interference pattern forms on
the screen, 50 cm away. In the pattern, the bright and dark fringes
are evenly spaced. The distance y1 shown is 0.304 mm. Compute
the wavelength λ of the light.

Notice first that Fig. 40-1 is not to scale. The rays from the slits
would actually be nearly parallel. We can therefore use the result
of Problem 40.2 with (r1 − r2) = mλ at the maxima (bright spots),
where m = 0, ±1, ±2, … Then

Or, alternatively, we could use the grating equation, since a double
slit is simply a grating with two lines. Both approaches result in
mλ = a sin θm.

We know that the distance from the central maximum to the first
maximum on either side is 0.304 mm. Therefore, from Fig. 40-1,

Then, for m = 1,

mλ = a sinθm   becomes   (1)λ = (0.80 × 10-3 m)(6.08 × 10-4)

from which λ = 486 nm, or to two significant figures, 0.49 × 103

nm.

40.4 [III]  Repeat Problem 40.1 for the case in which n1 < nf > or n1 > nf <



n2.

Experiment shows that, in this situation, cancellation occurs when
d is near zero. This is due to the fact that light generally undergoes
a phase shift upon reflection. The process is rather complicated,
but for incident angles less than about 30° it’s fairly
straightforward. Then there will be a net phase difference of 180°
introduced between the internally and externally reflected beams.
Thus, when the film is very thin compared to λ and d ≈ 0, there
will be an apparent path difference for the two beams of  and
cancellation will occur. (This was not the situation in Problem
40.1, because there both beams were externally reflected.)

Destructive interference occurs for d ≈ 0, as we have just seen.
When , cancellation again occurs. The same thing happens
at . Therefore, in this problem cancellation occurs at d =
0, 300 nm, and 600 nm.

Reinforcement occurs when , because then beam-2 acts as
though it had traveled an additional .
Reinforcement again occurs when d is increased by  and by λ.
Hence, for reinforcement, d = 150 nm, 450 nm, and 750 nm.

40.5 [III]  When one leg of a Michelson interferometer is lengthened
slightly, 150 dark fringes sweep through the field of view. If the
light used has a wavelength of λ = 480 nm, how far was the
mirror in that leg moved?

Darkness is observed when the light beams from the two legs are
180° out-of-phase. As the length of one leg is increased by 1–2 λ,
the path length (down and back) increases by λ and the field of
view changes from dark to bright to dark. When 150 fringes pass,
the leg is lengthened by an amount

40.6 [III]  As shown in Fig. 40-4, two flat glass plates touch along the



leftmost edge and are separated at the other end by a spacer.
Using vertical viewing and light with λ = 589.0 nm, five dark
fringes (indicated by a D in the diagram) are obtained from edge
to edge. What is the thickness of the spacer?

Fig. 40-4

The pattern is caused by interference between a beam reflected
from the upper surface of the air wedge and a beam reflected from
the lower surface of the wedge. The two reflections are of different
natures in that reflection at the upper surface takes place at the
boundary of a medium (air) of lower refractive index, while
reflection at the lower surface occurs at the boundary of a medium
(glass) of higher refractive index. In such cases, the act of
reflection by itself involves a phase displacement of 180° between
the two reflected beams. This explains the presence of a dark
fringe at the left-hand edge.

As we move from a dark fringe to the next dark fringe, the beam
that traverses the wedge must be held back by a path-length
difference of λ. Because the beam travels twice through the wedge
(down and back up), the wedge thickness changes by only  as
we move from fringe to fringe. Thus,

40.7 [III]  In an experiment used to show Newton’s rings, a plano-convex
lens is placed on a flat glass plate, as in Fig. 40-5. When the lens
is illuminated from directly above, a top-side viewer sees a series
of bright and dark rings centered on the contact point, which is
dark. Find the air-gap thickness at (a) the third dark ring and (b)
the second bright ring. Assume 500-nm light is being used.



Fig. 40-5

Because one reflection is internal and the other external, there will
be a relative phase shift of 180°.

(a) The gap thickness is zero at the central dark spot. It increases
by  as we move from a position of darkness to the next
position of darkness. (Why  ?) Therefore, at the third dark
ring,

(b) The gap thickness at the first bright ring must be large enough
to increase the path length by . Since the ray traverses the
gap twice, the thickness there is . As we go from one bright
ring to the next, the gap thickness increases by . Therefore, at
the second bright ring,

40.8 [II]  Discuss the thickness of a soap film in air which will appear black
when viewed with sodium light (λ = 589.3 nm) reflected
perpendicular to the film. The refractive index for soap solution is
n = 1.38.

The situation is shown in Fig. 40-6. Ray-b has an extra equivalent
path length of 2nd = 2.76d. In addition, there is a relative phase
shift of 180°, or , between the beams because of the reflection
process, as described in Problems 40-4 and 40-6.

Cancellation (and darkness) occurs if the retardation between the
two beams is , and so on. Therefore, for darkness,



as the thinnest possible film other than zero. In practice, the film
will become black when d << λ/4.

Fig. 40-6

40.9 [II]  A single slit of width D = 0.10 mm is illuminated by parallel light
of wavelength 600 nm, and diffraction bands are observed on a
screen 40 cm from the slit. How far is the third dark band from
the central bright band? (Refer to Fig. 40-7.)

For a single slit, the locations of dark bands are given by the
equation m'λ = Dsin θm'. Then

From the figure, tanθ3 = y/40 cm, and so

y = (40 cm)(tan θ3) = (40 cm)(0.018) = 0.72 cm



Fig. 40-7

40.10 [I]   Red light falls normally on a diffraction grating ruled 4000
lines/cm, and the second-order image is diffracted 34.0° from the
normal. Compute the wavelength of the light.

From the grating equation mλ = a sinθm

40.11 [I]   Figure 40-8 depicts a laboratory setup for grating experiments.
The diffraction grating has 5000 lines/cm and is 1.00 m from the
slit, which is illuminated with sodium light. On either side of the
slit, and parallel to the grating, is a meterstick. The eye, placed
close to the grating, sees virtual images of the slit along the
metersticks. Determine the wavelength of the light if each first-
order image is 31.0 cm from the slit.

Fig. 40-8



40.12 [I]   Green light of wavelength 540 nm is diffracted by a grating ruled
with 2000 lines/cm. (a) Compute the angular deviation of the
third-order image. (b) Is a 10th-order image possible?

Since the value of θ10 cannot exceed 1, a 10th-order image is
impossible.

40.13 [II] Show that, in a spectrum of white light obtained with a grating,
the red (λr = 700 nm) of the second order overlaps the violet (λu =
400 nm) of the third order.

As sinθ2 sinθ3, θ2 > θ3. Thus, the angle of diffraction of red in the
second order is greater than that of violet in the third order.

40.14 [I]  A parallel beam of X-rays is diffracted by a rock salt crystal. The
first-order strong reflection is obtained when the glancing angle
(the angle between the crystal face and the beam) is 6°50'. The
distance between reflection planes in the crystal is 2.8 Å. What is
the wavelength of the X-rays? (1 angstrom = 1 Å = 0.1 nm.)

Note that the Bragg equation involves the glancing angle, not the
angle of incidence.

40.15 [II] Two point sources of light are 50 cm apart, as shown in Fig. 40-9.
They are viewed by the eye at a distance L. The entrance opening
(pupil) of the viewer’s eye has a diameter of 3.0 mm. If the eye
were perfect, the limiting factor for resolution of the two sources



would be diffraction. In that limit, how large could we make L
and still have the sources seen as separate entities?

Fig. 40-9

This problem is about the limit of resolution as previously defined.
In the limiting case, θ = θcr, where sinθcr = (1.22)(λ/D). But we
see from the figure that sinθcr is nearly equal to s/L, because s is so
much smaller than L. Substitution of this value gives

We have taken λ = 500 nm, about the middle of the visible range.

SUPPLEMENTARY PROBLEMS

40.16 [I] Considering Young’s experiment using monochromatic light, what
happens to the width of the central fringe (and, indeed, of all the
fringes) if we decrease the wavelength by 10%, all else kept
constant? Explain your answer. [Hint: The width of the central
maximum is taken to be the separation between the centers of the
first minima above and below the central axis.]

40.17 [I] In the double-slit setup using monochromatic illumination, what is
the value of the path-length difference for the first bright bands
above and below the central band? Explain your answer.

40.18 [I] Derive an expression for the center-to-center separation between
successive bright bands in Young’s experiment. Explain your
result. [Hint: Study Eq. (40.3).]

40.19 [I] In Young’s experiment using monochromatic light, what happens
to the separation of the fringes if we increase the wavelength by



20%, all else kept constant? Explain your answer. [Hint: Study the
previous problem.]

40.20 [I] In Young’s double-slit setup using monochromatic light and
horizontal slits, what happens to the width of the central fringe
(and, indeed, of all the fringes) if we double the separation between
the slits, all else kept constant? Explain your answer. [Hint: The
width of the central maximum is taken to be the separation between
the centers of the first minima above and below the central axis.
Study the previous two problems.]

40.21 [I] Suppose we have Young’s double-slit setup with monochromatic
illumination and the screen on which the fringe pattern is moved
from 1.5 m to 3.0 m from the aperture screen. Describe what, if
anything, happens to the fringe pattern. Explain your answer.

40.22 [I] Derive an expression for the location of the centers of the dark
bands in Young’s experiment. Give your answer in terms of Δr = r1
– r2 and m' = 0, 1, 2, . . . . Explain your answer. [Hint: The first
minima on either side of the central maximum occur when m' = 0.]

40.23 [I] In Young’s experiment using monochromatic light at a vacuum
wavelength of 589.3 nm, the two narrow slits are separated center
to center by 2.40 mm. Determine the spacing between successive
bright bands on a screen 1.00 m away. Explain your answer.

40.24 [I] The separation of the fringes in the previous problem is
inconveniently small and hard to see. To fix that, suppose we
double the distance from the slits to the viewing screen, and also
reduce the slit separation to 0.240 mm, keeping everything else
constant. Determine the new fringe spacing.

40.25 [II] Two sound sources send identical waves of 20-cm wavelength out
along the +x-axis. At what separations of the sources will a
listener on the axis beyond him or her hear (a) the loudest sound
and (b) the weakest sound?

40.26 [II] In an experiment such as that described in Problem 40.1,
brightness is observed for the following film thicknesses: 2.90 ×
10-7 m, 5.80 × 10-7 m, and 8.70 × 10-7 m. (a) What is the
wavelength of the light being used? (b) At what thicknesses



would darkness be observed?

40.27 [I] A double-slit experiment is done in the usual way with 480-nm
light and narrow slits that are 0.050 cm apart. At what angle to the
central axis will one observe (a) the third-order bright spot and (b)
the second minimum from the central maximum?

40.28 [I] In Problem 40.27, if the slit-to-screen distance is 200 cm, how far
from the central maximum are (a) the third-order bright spot and
(b) the second minimum?

40.29 [I] Red light of wavelength 644 nm, from a point source, passes
through two parallel and narrow slits which are 1.00 mm apart.
Determine the distance between the central bright fringe and the
third dark interference fringe formed on a screen parallel to the
plane of the slits and 1.00 m away.

40.30 [I] Two flat glass plates are pressed together at the top edge and
separated at the bottom edge by a strip of tinfoil. The air wedge is
examined in yellow sodium light (589 nm) reflected normally from
its two surfaces, and 42 dark interference fringes are observed.
Compute the thickness of the tinfoil.

40.31 [I] A mixture of yellow light of wavelength 580 nm and blue light of
wavelength 450 nm is incident normally on an air film 290 nm
thick. What is the color of the reflected light?

40.32 [II] Repeat Problem 40.1 if the film has a refractive index of 1.40 and
the vacuum wavelength of the incident light is 600 nm.

40.33 [II] Repeat Problem 40.6 if the wedge is filled with a fluid that has a
refractive index of 1.50 instead of air.

40.34 [II] A single slit of width 0.140 mm is illuminated by monochromatic
light, and diffraction bands are observed on a screen 2.00 m away.
If the second dark band is 16.0 mm from the central bright band,
what is the wavelength of the light?

40.35 [II] Green light of wavelength 500 nm is incident normally on a
grating, and the second-order image is diffracted 32.0° from the
normal. How many lines/cm are marked on the grating?

40.36 [II] A narrow beam of yellow light of wavelength 600 nm is incident



normally on a diffraction grating ruled 2000 lines/cm, and images
are formed on a screen parallel to the grating and 1.00 m distant.
Compute the distance along the screen from the central bright line
to the first-order lines.

40.37 [II] Blue light of wavelength 4.7 × 10-7 m is diffracted by a grating
ruled 5000 lines/cm. (a) Compute the angular deviation of the
second-order image. (b) What is the highest-order image
theoretically possible with this wavelength and grating?

40.38 [II] Determine the ratio of the wavelengths of two spectral lines if the
second-order image of one line coincides with the third-order
image of the other line, both lines being examined by means of
the same grating.

40.39 [II] A spectrum of white light is obtained with a grating ruled with
2500 lines/cm. Compute the angular separation between the violet
(λu = 400 nm) and red (λr = 700 nm) in the (a) first order and (b)
second order. (c) Does yellow (λy = 600 nm) in the third order
overlap the violet in the fourth order?

40.40 [II] A spectrum of the Sun’s radiation in the infrared region is
produced by a grating. What is the wavelength being studied if the
infrared line in the first order occurs at an angle of 25.0° with the
normal and the fourth-order image of the hydrogen line of
wavelength 656.3 nm occurs at 30.0°?

40.41 [III] How far apart are the diffracting planes in a NaCl crystal for
which X-rays of wavelength 1.54 Å make a glancing angle of
15°54' in the first order?

ANSWERS TO SUPPLEMENTARY PROBLEMS

40.16 [I] From Eq. (40.3) the widths of all the fringes would increase by
10%.

40.17 [I] λ0; from Eq. (40.2) when m = ±1, r1−r2 = mλ0 = λ0.



40.18 [I] Δy ≈ sλ0/a; we want ym+1 − ym ≈ s(m + 1)λ0/a.

40.19 [I] It will increase the separation by 20%, since from the previous
problem Δy ≈ sλ0/a.

40.20 [I] We halve the width of the fringes; Δy ≈ sλo/a.

40.21 [I] The fringe pattern doubles in sizes; that follows from Eq. (40.3)
and the results of Problem 40.18, viz., Δy ≈ sλo/a.

40.22 [I] ; when , and we get destructive
interference; when m' = 1, Δr = ±(3/2)λO, and so on.

40.23 [I] Δy ≈ sλo/a = 0.246 mm

40.24 [I] Δy ≈ sλo/a = 4.91 mm

40.25 [II] (a) m(20 cm), where m = 0, 1, 2, …; (b) 10 cm + m(20 cm)

40.26 [II] (a) 580 nm; (b) 145(1 + 2m) nm

40.27 [I] (a) 0.17°; (b) 0.083°

40.28 [I] (a) 0.58 cm; (b) 0.29 cm

40.29 [I] 1.61 mm

40.30 [I] 12.4 µm

40.31 [I] blue

40.32 [II] (a) 0, 214 nm, 429 nm; (b) 107 nm, 321 nm, 536 nm

40.33 [II] 785 nm

40.34 [II] 560 nm

40.35 [II] 5.30 × 103 lines/cm

40.36 [II] 12.1 cm

40.37 [II] (a) 28°; (b) fourth

40.38 [II] 3:2

40.39 [II] (a) 4°20'; (b) 8°57'; (c) yes

40.40 [II] 2.22 × 10-6 m



40.41 [III] 2.81 Å



Special Relativity

A Reference Frame is a coordinate system relative to which physical
measurements are taken. An inertia reference frame is one which moves
with constant velocity—that is, one which is not accelerating.

The Special Theory of Relativity was proposed by Albert Einstein (1905)
and is concerned with bodies that are moving with constant velocity. The
theory is predicated on two postulates:

(1) The laws of physics are the same in all inertial reference
frames. The velocity of an object can only be given relative to
some other object.

(2) The speed of light in free space, c, has the same value for all
observers, independent of the motion of the source (or the
motion of the observer).

These postulates lead to the following conclusions.

The Relativistic Linear Momentum  of a body of mass m and speed υ is

where  and γ > 1 (see Table 41-1). Some physicists prefer to
associate the γ with the mass and introduce a relativistic mass mr = γm. That
allows you to write the momentum as p = mru, but mr is then speed
dependent. That approach was once quite popular but is now in disfavor.
Here we will use only one mass, m, which is independent of speed, just like



the two other fundamental properties of particles of matter, charge and spin.
It is common practice to introduce the quantity γ = u/c whereupon 

. At everyday speeds γ ≈ 0 and γ is essentially indistinguishable
from 1. In such cases, using the binomial expansion for c >> υ, we can
approximate γ as

Limiting Speed: When υ = c, the momentum of an object becomes infinite.
We conclude that no material object posessing mass can be accelerated to
the speed of light c, and so c is an upper limit for speed.

Relativistic Energy (E): The total energy of a body of mass m is given by

where

Total energy = Kinetic energy + Rest energy

TABLE 41-1
Values of β, 1/γ, and γ



or

When a body is at rest, γ = 1, KE = 0, and the rest energy (EO) is given by

The rest energy includes all forms of energy internal to the system.
The kinetic energy of a body of mass m is

If the speed of the object is not too large, this reduces to the usual
expression

Using the expression p = γmu, the total energy of a body can be written as



Time Dilation: Time is relative; it “flows” at different rates for differently
moving observers. Suppose a spaceship and a planet are moving with
respect to one another at a relative speed υ and each carries an identical
clock. The ship’s pilot will see an interval of time ΔtS pass on her clock,
with respect to which she is stationary. An observer on the ground will also
notice a time interval ΔtS pass on the ship’s clock, which is moving with
respect to him. He, however, will notice that interval to take a time
(measured via his own clock) of ΔtM where ΔtM > ΔtS. The observer on the
ground, with respect to whom the ship’s clock is moving, will see time
running more slowly on board the ship. For example, he might see 10 min
(i.e., ΔtS) go by on the clock in the spaceship while his own clock shows
that perhaps 20 min (i.e., ΔtM) went by for him. Accordingly,

A clock, or indeed any process, seen to be moving, progresses more slowly
than when observed at rest. Remember that γ > 1. Similarly the pilot will see
time running more slowly on the ground.

The time taken for an event to occur, as recorded by a stationary observer
at the site of the event, is called the proper time, ΔtS. All observers moving
past the site record a longer time for the event to occur. Hence, the proper
time for the duration of an event is the smallest measured time for the event.
The interval ΔtM is in laboratory time, also called coordinate time. You
may also see the above time dilation equation written as ∆t = γ ∆τ where τ is
proper time.

Simultaneity: Imagine that for a given observer two events occur at
different locations, but at the same time. The events are simultaneous for
this observer, but in general they are not simultaneous for a second observer
moving relative to the first. Simultaneity is relative.

Length or Lorentz Contraction: Suppose an object is measured to have an
x-component length LS when stationary (LS is called the proper length).
The object is then given an x-directed speed υ, so that it is moving with
respect to an observer. That observer will see the object to have been



shortened in the x-direction (but not in the y- and z-directions). Its x-length
as measured by the observer with respect to whom it is moving (LM) will
then be

where LS>LM; the length of the object as measured by someone who is
stationary with respect to it (LS) is always greater then the length measured
by someone who sees the object moving by (LM).

Velocity Addition Formula: Fig. 41-1 shows a coordinate system S′
moving at a speed uOɿO with respect to a coordinate system S. Now consider
an object at point P moving in the x-direction at a speed UPO' relative to
point O′. Special Relativity establishes that the speed of the object with
respect to O is not the classical value of UPO' + UO'O, but instead

Notice that even when UPO' = UPO'O = c the value of UPO = c.

Fig. 41-1

PROBLEM SOLVING GUIDE



When computing γ, don’t forget to square both υ and c, and check your
work with Table 41-1. It is always a good idea to rework a problem in a
different way as a check. Even if that’s not possible, run through the
calculation in a different order to make sure you get the same numerical
answer. Remember that, c = 299 792 458 m/s.

SOLVED PROBLEMS

41.1 [I]    How fast must an object be moving if its corresponding value of γ
is to be 1.0 percent larger than γ is when the object is at rest? Give
your answer to two significant figures.

Use the definition  to find that at υ = 0, γ = 1.0.
Hence, the new value of γ = 1.01(1.0), and so

Solving yields υ = 0.14 c = 4.2 × 107 m/s.

41.2 [I]    Compute the value of γ for a particle traveling at half the speed of
light. Give your answer to three significant figures.

41.3 [II]  If 1.00 g of matter could be converted entirely into energy, what
would be the value of the energy so produced, at 10.0 cents per
kW.h?

We make use of ΔEO = (∆m)c2 to find

Energy gained = (Mass lost)c2 = (1.00 × 10-3 kg)(2.998 × 108

m/s)2 = 8.99 × 1013 J



41.4 [II]  A 2.0-kg object is lifted from the floor to a tabletop 30 cm above
the floor. By how much did the mass of the system consisting of
the Earth and the object increase because of this increased PEG?

We use ΔEO = (∆m)c2, with ΔEO = mgh. Therefore,

41.5 [III] An electron is accelerated from rest through a potential difference
of 1.5 MV and thereby acquires 1.5 MV of energy. Find its final
speed.

Using KE = γmc2 - mc2 and the fact that KE = ΔPEE, we have

KE = (1.5 × 106 eV)(1.6 × 10-19 J/eV) = 2.4 × 10-13 J

41.6 [II]   Determine the energy required to give an electron a speed equal to
0.90 that of light, starting from rest.

41.7 [III] Show that KE = (γm - m)c2 reduces to KE =  when υ is very
much smaller than c.



Let b = −u2/c2 and expand (1 + b)-1/2 by the binomial theorem:

If υ is very much smaller than c, the terms after  are
negligibly small.

41.8 [III] An electron traveling at high (or relativistic) speed moves
perpendicularly to a magnetic field of 0.20 T. Its path is circular,
with a radius of 15 m. Find (a) the momentum, (b) the speed, and
(c) the kinetic energy of the electron. Recall that, in nonrelativistic
situ ations, the magnetic force qυB furnishes the centripetal force
mu2 / r. Thus, since p = mυ, it follows that

p = qBr

and this relation holds even when relativistic effects are important.

First find the momentum using p = qBr

Squaring both sides and solving for (u/c)2 give

Most hand calculators cannot handle this. Accordingly, we
make use of the fact that  for x << 1. Then



u/c ≈ 1 − 1.61 × 10-7 = 0.999 999 84

But we already found (u/c)2 = 1/(1 + 3.23 × 10-7). If we use the
approximation 1/(1 + x) ≈ 1 - x for x << 1, we have (u/c)2 ≈ 1 -
3.23 × 10-7. Then

Evaluating the above expression yields

KE = 1.4 × 10-10 J = 9.0 × 108 eV

An alternative solution method would be to use E2 = p2c2 + m2c4

and recall that KE = E - mc2.

41.9 [II]  The Sun radiates energy equally in all directions. At the position of
the Earth (r = 1.50 × 1011 m), the irradiance of the Sun’s radiation
is 1.4 kW/m2. How much mass does the Sun lose per day because
of the radiation?

The area of a spherical shell centered on the Sun and passing
through the Earth is

Area = 4πr2 = 4π(1.50 × 1011 m)2 = 2.83 × 1023 m2

Through each square meter of this area, the Sun radiates an energy
per second of 1.4 kW/m2. Therefore, the Sun’s total radiation per
second is

Energy/s = (area)(1400 W/m2) = 3.96×1026 W

The energy radiated in one day (86 400 s) is



Energy/day = (3.96×1026 W)(86 400 s/day) × 3.42×1031 J/day

Because mass and energy are related through ∆E0 = ∆mc2, the
mass loss per day is

For comparison, the Sun’s mass is 2 × 1030 kg.

41.10 [I] A beam of radioactive particles is measured as it shoots through
the laboratory. It is found that, on the average, each particle
“lives” for a time of 2.0 × 10-8 s; after that time, the particle
changes to a new form. When at rest in the laboratory, the same
particles “live” 0.75 × 10-8 s on the average. How fast are the
particles in the beam moving?

Some sort of timing mechanism within the particle determines
how long it “lives.” This internal clock, which gives the proper
lifetime, must obey the time-dilation relation. We have ΔtM = γΔtS
where the observer with respect to whom the particle (clock) is
moving sees a time interval of ΔtM = 2.0 × 10-8 s. Hence,

Squaring both sides of the equation and solving for υ leads to υ =
0.927c = 2.8 × 108 m/s.

41.11 [II] Two twins are 25.0 years old when one of them sets out on a
journey through space at nearly constant speed. The twin in the
spaceship measures time with an accurate watch. When he
returns to Earth, he claims to be 31.0 years old, while the twin
left on Earth knows that she is 43.0 years old. What was the
speed of the spaceship?

The spaceship clock as seen by the space-twin reads the trip time
to be ΔtS, which is 6.0 years long. The Earth-bound twin sees her



brother age 6.0 years, but her clocks tell her that a time ΔtM = 18.0
years has actually passed. Hence, ΔtM = γ ΔtS becomes 

 and so

from which (u/c)2 = 1 - 0.111 or υ = 0.943c = 2.83 × 108 m/s

41.12 [II] Two cells that subdivide on Earth every 10.0 s start from the
Earth on a journey to the Sun (1.50 × 1011 m away) in a
spacecraft moving at 0.850c. How many cells will exist when the
spacecraft crashes into the Sun?

According to Earth observers, with respect to whom the cells are
moving, the time taken for the trip to the Sun is the distance
traveled (x) over the speed (υ),

Because spacecraft clocks are moving with respect to the planet,
they appear from Earth to run more slowly. The time these clocks
read is

The cells divide according to the spacecraft clock, a clock that is at
rest relative to them. They therefore undergo 31 divisions in this
time, since they divide each 10.0 s. Therefore, the total number of
cells present on crashing is

(2)31 = 2.1 × 109 cells

41.13 [I]   A person in a spaceship holds a meterstick as the ship shoots past
the Earth with a speed υ parallel to the Earth’s surface. What does
the person in the ship notice as the stick is rotated from parallel to
perpendicular to the ship’s motion?



The stick behaves normally; it does not change its length, because
it has no translational motion relative to the observer in the
spaceship. However, an observer on Earth would measure the stick
to be  long when it is parallel to the ship’s motion,
and 1 m long when it is perpendicular to the ship’s motion.

41.14 [II]  A spacecraft moving at 0.95c travels from the Earth to the star
Alpha Centauri, which is 4.5 light years away. How long will the
trip take according to (a) Earth clocks and (b) spacecraft clocks?
(c) How far is it from Earth to the star according to spacecraft
occupants? (d) What do they compute their speed to be?

A light year is the distance light travels in 1 year, namely

1 light year = (2.998 × 108 m/s)(3.16 × 107 s) = 9.47 × 1015 m

Hence the distance to the star (according to earthlings) is

de = (4.5)(9.47 × 1015 m) = 4.3 × 1016 m

(b) Because clocks on the moving spacecraft run slower,

(c) For the spacecraft occupants, the Earth-star distance is moving
past them with speed 0.95c. Therefore, that distance is
shortened for them; they find it to be

(d) For the spacecraft occupants, their relative speed is

which is 0.95c. Both Earth and spacecraft observers measure the



same relative speed.
41.15 [II] As a rocket ship sweeps past the Earth with speed υ, it sends out a

pulse of light ahead of it. How fast does the light pulse move
according to people on the Earth?

Method 1

With speed c (by the second postulate of Special Relativity).

Method 2

Here υO'O = υ and υPO' = c. According to the velocity addition
formula, the observed speed will be (since u = c in this case)

SUPPLEMENTARY PROBLEMS

41.16 [I] Determine γ when the speed of a spacecraft is 3c/5. [Hint: Take a
look at Table 41-1.]

41.17 [I] The fastest vehicle leaving Earth so far was NASA’s New Horizon
Pluto mission. The craft attained a speed of 16.26 km/s. Determine
the corresponding value of γ using  first; then use Eq.
(41.2). [Hint: Work in m/s and use c = 2.998 × 108 m/s.]

41.18 [I] A spaceship is seen by a stationary observer on the ground to be
moving with a speed such that γ = 1.67. The craft when constructed
was 100.0 m long. How long will it appear to the observer? [Hint:
The Lorentz Contraction means it will appear shorter.]

41.19 [I] A space probe that was manufactured to be precisely 200 m long is
flying passed a space station. Someone aboard the station measures
the probe to be 180 m long. Determine γ for the probe. [Hint: The
Lorentz Contraction means LM < LS. Keep in mind that γ > 1.]



41.20 [I] How fast was the probe traveling, in the previous problem, when it
passed the station?

41.21 [I] The clock on a spaceship shows that a robot on board took 10.0 s
to do some job. The ship flies passed a station, and someone
watching the robot also notes how long it took to do the job using
her own wristwatch. If she computes γ for the ship to be 1.08, how
long will she say the robot took to do the job? [Hint: Time dilation
means time slows and durations appear longer.]

41.22 [I] A proton has a mass of 1.672 6 × 10–27 kg and is traveling at a
speed where γ = 2.294 157; that’s 90.000% the speed of light.
Determine the magnitude of its momentum. How does that
compare with its classical momentum? Four significant figures will
do. Discuss your answer. [Hint: Relativistically p = γmv; classically
p = mv.]

41.23 [I] A proton has a mass of 1.672 6 × 10–27 kg and is traveling at a
speed where γ = 2.294 157; that’s 90% the speed of light.
Determine its total energy. Four significant figures will do. Discuss
your answer as it compares with classical energy.

41.24 [I] A proton has a mass of 1.672 6 × 10–27 kg and is traveling at a
speed where γ = 2.294 157; that’s 90% the speed of light.
Determine its rest energy. Four significant figures will do. What
does this energy correspond to? [Hint: Study Eq. (41.5).]

41.25 [I] A proton has a mass of 1.672 6 × 10–27 kg and is traveling at a
speed where γ = 2.294 157; that’s 90% the speed of light.
Determine its kinetic energy. Four significant figures will do. What
does this energy correspond to? [Hint: Study the previous two
problems.]

41.26 [I] At what speed must a particle move for γ to be 2.0?

41.27 [I] A particle is traveling at a speed υ such that u/c = 0.99. Find γ for
the particle.

41.28 [I] Compute the rest energy of an electron—that is, the energy
equivalent of its mass, 9.11 × 10-31 kg.

41.29 [I] Determine the speed of an electron having a kinetic energy of 1.0



× 105 eV (or equivalently 1.6 × 10-14 J).

41.30 [II] A proton (m = 1.67 × 10-27 kg) is accelerated to a kinetic energy
of 200 MeV. What is its speed at this energy?

41.31 [II] Starting with the definition of linear momentum and the relation
between mass and energy, prove that E2 = p2c2 + m2c4. Use this
relation to show that the translational KE of a particle of mass m
is 

41.32 [II] A certain strain of bacteria doubles in number each 20 days. Two
of these bacteria are placed on a spaceship and sent away from the
Earth for 1000 Earth-days. During this time, the speed of the ship
is 0.995 0c. How many bacteria are aboard when the ship lands on
the Earth?

41.33 [II] A certain light source sends out 2 × 1015 pulses each second. As a
spaceship travels parallel to the Earth’s surface with a speed of
0.90c, it uses this source to send pulses to the Earth. The pulses
are sent perpendicular to the path of the ship. How many pulses
are recorded on Earth each second?

41.34 [II] The insignia painted on the side of a spaceship is a circle with a
line across it at 45° to the vertical. As the ship shoots past another
ship in space, with a relative speed of 0.95c, the second ship
observes the insignia. What angle does the observed line make to
the vertical?

41.35 [II] As a spacecraft moving at 0.92c travels past an observer on Earth,
the Earthbound observer and the occupants of the craft each start
identical alarm clocks that are set to ring after 6.0 h have passed.
According to the Earthling, what does the Earth clock read when
the spacecraft clock rings?

41.36 [III] Find the speed and momentum of a proton (m = 1.67 × 10-27 kg)
that has been accelerated through a potential difference of 2000
MV. (We call this a 2 GeV proton.) Give your answers to three
significant figures.



ANSWERS TO SUPPLEMENTARY PROBLEMS

41.16 [I] 1.25

41.17 [I] γ = 1.000; γ ≈ 1 + 1.47 × 10-9

41.18 [I] The person who sees the ship moving sees it to be LM = γ-1 LS=
59.9 m long.

41.19 [I] The person who sees the probe moving such that LM = γ–1 LS =
180 m = γ-1 200 m; γ = 200/180 = 1.11

41.20 [I] γ = 1.11, and so υ = 0.434c.

41.21 [I] ΔtM = γΔtS = 10.8 s

41.22 [I] Classically p = mυ = 4.513 × 10-19 kg·m/s; relativistically p = γmυ
= 1.035 × 10-18 km·m/s. We expect that the relativistic momentum
should increase over the classical value since it must approach
infinity as υ approaches c.

41.23 [I] E = γmc2 = 3.449 × 10-10 J; this is not KE, E contains the rest
energy as well as the KE.

41.24 [I] EO = mc2 = 1.503 × 10-10 J; this is the energy equivalent of the
mass. It is less than E, the total energy.

41.25 [I] KE = E − EO = 3.449 × 10-10 J − 1.503 × 10-10 J = 1.946 × 10-10 J;
as in the classical case, this is the energy of motion.

41.26 [I] 2.6 × 108 m/s

41.27 [I] 7.1

41.28 [I] 0.512 MeV = 820 pJ

41.29 [I] 1.6 × 108 m/s

41.30 [II] 1.70 × 108 m/s

41.32 [II] 64

41.33 [II] 8.7 × 1014 pulses/s



41.34 [II] tanθ = 0.31 and θ = 17°

41.35 [II] 15 h

41.36 [III] 0.948c, 1.49 × 10-18 kg·m/s



Quantum Physics and Wave Mechanics

Quanta of Radiation: All the various forms of electromagnetic radiation,
including light, have a dual nature. When traveling through space, they act
like waves and give rise to interference and diffraction effects. But when
electromagnetic radiation interacts with atoms and molecules, the beam acts
like a stream of energy corpuscles called photons or light-quanta. Photons
only exist at speed c.

The energy (E) of each photon depends upon the frequency ƒ (or
wavelength λ) of the radiation:

where h = 6.626 × 10-34 J·s (or 4.136 × 10-15 eV·s) is a constant of nature
called Planck’s constant.

Photoelectric Effect: When electromagnetic radiation is incident on the
surface of certain metals electrons may be ejected. A photon of energy hƒ
penetrates the material and is absorbed by an electron. If enough energy is
available, the electron will be raised to the surface and ejected with some
kinetic energy, . Depending on how deep in the material they are,
electrons having a range of values of KE will be emitted. Let φ be the
energy required for an electron to break free of the surface, the so-called
work function. For electrons up near the surface to begin with, an amount
of energy (hƒ - φ) will be available, and this is the maximum kinetic energy 

 that can be imparted to any electron.

TABLE 42-1



Representative work function values

Accordingly, Einstein’s photoelectric equation is

The energy of the ejected electron may be found by determining what
potential difference must be applied to stop its motion; then . For
the most energetic electron,

where Vs is called the stopping potential.
For any surface, the radiation must be of short enough wavelength so that

the photon energy hƒ is large enough to eject the electron. At the threshold
wavelength (or frequency), the photon’s energy just equals the work
function. For ordinary metals the threshold wavelength lies in the visible or
ultraviolet range. X-rays will eject photoelectrons readily; far-infrared
photons will not.

The Momentum of a Photon: Because E2 = m2c4 + p2c2, when m = 0, E =
pc. Hence, since E = hf

The momentum of a photon is p = h/λ.



Compton Effect: A photon can collide with a particle having mass, such as
an electron. When it does so, the scattered photon (one reemitted in a
different direction) will have a new energy and momentum. If a photon of
initial wavelength λi collides with an essentially free, stationary electron of
mass me and is in effect deflected through an angle θ, then its scattered
wavelength is increased to λs, where

The fractional change in wavelength is very small except for high-energy
radiation such as X-rays or γ-rays.

De Broglie Wavelength (λ): A particle of mass m moving
nonrelativistically with momentum p has associated with it a de Broglie
wavelength

A beam of particles can be diffracted and can undergo interference
phenomena. These wavelike properties of particles can be computed by
assuming the particles to behave like waves (de Broglie waves) having the
de Broglie wavelength.

Resonance of de Broglie Waves: A particle that is confined to a finite
region of space is said to be a bound particle. Typical examples of bound-
particle systems are a gas molecule in a closed container and an electron in
an atom. The de Broglie wave that represents a bound particle will undergo
resonance within the confinement region if the wavelength fits properly into
the region. We call each possible resonance form a (stationary) state of the
system. The particle is most likely to be found at the positions of the
antinodes of the resonating wave; it is never found at the positions of the
nodes.

Quantized Energies for bound particles arise because each resonance
situation has a discrete energy associated with it. Since the particle is likely
to be found only in a resonance state, its observed energies are discrete
(quantized). Only in atomic (and smaller) particle systems are the energy



differences between resonance states large enough to be easily observable.

PROBLEM SOLVING GUIDE

The energy of photons is sometimes given in electron volts (eV), and
wavelength is usually in nanometers (nm). Since E = hc/λ, it can be helpful
to know that in that mix of units hc = 1240 hc = 1240 eV·s.

SOLVED PROBLEMS

42.1 [I]   Show that the photons in a 1240-nm infrared beam have energies of
1.00 eV.

42.2 [I]   Compute the energy of a photon of blue light of wavelength 450
nm.

42.3 [I]   To break a chemical bond in the molecules of human skin and thus
cause sunburn, a photon energy of about 3.50 eV is required. To
what wavelength does this correspond?

Ultraviolet radiation causes sunburn.

42.4 [II]  The work function of sodium metal is 2.3 eV. What is the longest-
wavelength light that can cause photoelectron emission from
sodium?

At threshold, the photon energy just equals the energy required to
tear the electron loose from the metal. In other words, the



electron’s KE is zero and so hf = φ. Since f = c/λ,

42.5 [II]  What potential difference must be applied to stop the fastest
photoelectrons emitted by a nickel surface under the action of
ultraviolet light of wavelength 200 nm? The work function of
nickel is 5.01 eV.

Then, from the photoelectric equation, the energy of the fastest
emitted electron is

6.21 eV - 5.01 eV = 1.20 eV

Hence, a negative retarding potential of 1.20 V is required. This is
the stopping potential.

42.6 [II]    Will photoelectrons be emitted by a metal surface, of work
function 4.4 eV, when illuminated by visible light?

As in Problem 42.4, the released-electron’s KE = 0 and so

Hence, visible light (350 nm to 700 nm) cannot eject
photoelectrons from copper.

42.7 [II]  A beam (λ = 633 nm) from a typical laser designed for student use
has an intensity of 3.0 mW. How many photons pass a given point
in the beam each second?

The energy that is carried past the point each second is 0.003 0 J.



Because the energy per photon is hc/λ, which works out to be 3.14
× 10-19 J, the number of photons passing the point per second is

42.8 [III]  In a process called pair production, a photon is transformed into
an electron and a positron. A positron has the same mass (me) as
the electron, but its charge is +e. To three significant figures, what
is the minimum energy a photon can have if this process is to
occur? What is the corresponding wavelength?

The electron-positron pair will come into existence moving with
some minimum amount of KE. The particles will separate, and as
they do they will slow down. When far apart each will have a
mass of 9.11 × 10-31 kg. In effect, KE goes into PE, which is
manifested as mass.

Thus, the minimum energy photon at the start of the process must
have the energy equivalent of the free-particle mass of the pair at
the end of the process. Hence,

E = 2mec2 = (2)(9.11 × 10-31 kg)(2.998 × 108 m/s)2 = 1.64 × 10-13 J = 1.02
MeV

Because this energy must equal hc/λ, the photon’s energy,

This wavelength is in the very short X-ray region, the region of γ-
rays.

42.9 [II]  What wavelength must electromagnetic radiation have if a photon
in the beam is to have the same momentum as an electron moving
with a speed of 2.00 × 105 m/s?

The requirement is that (mv)electron = (h/λ)photon. From this,



This wavelength is in the X-ray region.

42.10 [II] Suppose that a 3.64-nm photon moving in the +x-direction
collides head-on with a 2 × 105 m/s electron moving in the -x-
direction. If the collision is perfectly elastic, find the conditions
after collision.

From the law of conservation of momentum,

Momentum before = Momentum after

But, from Problem 42.9, h/λ0 = mu in this case. Hence, h/λ = mυ.
Also, for a perfectly elastic collision,

KE before = KE after

Using the facts that h/λ0 = mv0 and h/λ = mv, we find

Therefore, υ = υ0 and the electron moves in the +x-direction with
its original speed. Because h/λ = mυ = mυ0, the photon also
“rebounds,” and with its original wavelength.

42.11 [I]  A photon (λ = 0.400 nm) strikes an electron at rest and rebounds
at an angle of 150° to its original direction. Find the speed and
wavelength of the photon after the collision.

The speed of a photon is always the speed of light in vacuum, c.
To obtain the wavelength after collision, use the equation for the



Compton Effect:

42.12 [I]  What is the de Broglie wavelength for a particle moving with
speed 2.0 × 106 m/s if the particle is (a) an electron, (b) a proton,
and (c) a 0.20-kg ball?

We make use of the definition of the de Broglie wavelength:

Substituting the required values for m, one finds that the
wavelength is 3.6 × 10-10 m for the electron, 2.0 × 10-13 m for the
proton, and 1.7 × 10-39 m for the 0.20-kg ball.

42.13 [II]  An electron falls from rest through a potential difference of 100
V. What is its de Broglie wavelength?

Its speed will still be far below c, so relativistic effects can be
ignored. The KE gained, , equals the electrical PE lost, Vq.
Therefore,

42.14 [II]  What potential difference is required in an electron microscope to
give electrons a wavelength of 0.500 Å?

where use has been made of the de Broglie relation, λ = h/mv.
Substitution of the known values gives the KE as 9.66 × 10-17 J.



But KE = Vq, and so

42.15 [II] By definition, a thermal neutron is a free neutron in a neutron gas
at about 20 °C (293 K). What are the KE and wavelength of such
a neutron?

From Chapter 17, the thermal energy of a gas molecule is 3kT/2,
where k is Boltzmann’s constant (1.38 × 10-23 J/K). Then

This is a nonrelativistic situation for which we can write

42.16 [III] Find the pressure exerted on a surface by the photon beam of
Problem 42.7 if the cross-sectional area of the beam is 3.0 mm2.
Assume perfect reflection at normal incidence.

Each photon has a momentum

When a photon reflects, it changes momentum from +p to -p, a
total change of 2p. Since (from Problem 42.7) 9.5 × 1015 photons
strike the surface each second,

Momentum change/s = (9.5 × 1015/s)(2)(1.05 × 10-27 kg·m/s2) =
2.0 × 10-11 kg·m/s2

From the impulse equation (Chapter 8),

Impulse = Ft = Change in momentum



42.17 [III] A particle of mass m is confined to a narrow tube of length L.
Find (a) the wavelengths of the de Broglie waves which will
resonate in the tube, (b) the corresponding particle momenta, and
(c) the corresponding energies. (d) Evaluate the energies for an
electron in a tube with L = 0.50 nm.

(a) The de Broglie waves will resonate with a node at each end of
the tube because the ends are impervious. A few of the possible
resonance forms are shown in Fig. 42-1. They indicate that, for
resonance,  ... or

Fig. 42-1

(b) Because the de Broglie wavelengths are λn=h/pn, the resonance
momenta are



(c) As shown in Problem 42.15, p2 = (2m)(KE), and so

Notice that the particle can assume only certain discrete energies.
The energies are quantized.

(d) With m = 9.1 × 10-31 kg and L = 5.0 × 10-10 m, substitution
yields

(KE)n = 2.4 × 10-19 n2 J = 1.5n2 eV

42.18 [III] A particle of mass m is confined to a circular orbit with radius R.
For resonance of its de Broglie wave on this orbit, what energies
can the particle have? Determine the KE for an electron with R =
0.50 nm.

To resonate on a circular orbit, a wave must circle back on itself in
such a way that crest falls upon crest and trough falls upon trough.
One resonance possibility (for an orbit circumference that is four
wavelengths long) is shown in Fig. 42-2. In general, resonance
occurs when the circumference is n wavelengths long, where n =
1, 2, 3,… . For such a de Broglie wave



Fig. 42-2

As in Problem 42.17,

The energies are obviously quantized. Placing in the values
requested leads to

(KE)n = 2.4 × 10-20 n2 J = 0.15n2 eV

SUPPLEMENTARY PROBLEMS

42.19 [I] If you double the frequency of a photon, what happens to its
energy? Explain your answer.

42.20 [I] If you double the wavelength of a photon, what happens to its
energy? Explain your answer.

42.21 [I] Show that Planck’s constant, h = 6.626 × 10-34 J.s, can be
expressed as 4.136 × 10-15 eV.s. [Hint: Remember that the eV
involves the charge on the electron.]

42.22 [I] Show that hc = 1240 eV·nm. This will be useful when we work
with E = hc/λ. [Hint: Study the previous problem. Use c in nm/s
remembering that there are a lot more nanometers per second than
meters per second.]

42.23 [I] What is the energy of a photon in eV if it has a wavelength of 700
nm? [Hint: Study the last two problems.]

42.24 [I] Determine the energy in joules of a photon that has a wavelength
of 589.3 nm at the center of the sodium doublet.

42.25 [I] A photon has an energy of 2.0 eV. Determine its wavelength.
[Hint: Study Problem 41.22.]

42.26 [I] A photon has an energy of 4.0 eV. Determine its frequency



expressed in terahertz. [Hint: Study Problem 41.21.]

42.27 [I] Determine the momentum of a photon having a frequency of 410.0
THz.

42.28 [I] What is the wavelength of light in which the photons have an
energy of 600 eV?

42.29 [I] What must be the wavelength of a photon if it is to have the same
momentum as an electron traveling at 2.2 km/s?

42.30 [I] What is the energy of the least energetic photon that can result in
photoemission from a lead target? [Hint: Study Table 42-1.]

42.31 [I] What is the wavelength of the least energetic photon that can result
in photoemission from a iron target? [Hint: Study Table 42-1.]

42.32 [I] A certain sodium lamp radiates 20 W of yellow light (λ = 589 nm).
How many photons of the yellow light are emitted from the lamp
each second?

42.33 [I] What is the work function of sodium metal if the photoelectric
threshold wavelength is 680 nm?

42.34 [II] Determine the maximum KE of photoelectrons ejected from a
potassium surface by ultraviolet radiation of wavelength 200 nm.
What retarding potential difference is required to stop the
emission of electrons? The photoelectric threshold wavelength for
potassium is 440 nm.

42.35 [II] With what speed will the fastest photoelectrons be emitted from a
surface whose threshold wavelength is 600 nm, when the surface
is illuminated with light of wavelength 4 × 10-7 m?

42.36 [II] Electrons with a maximum KE of 3.00 eV are ejected from a
metal surface by ultraviolet radiation of wavelength 150 nm.
Determine the work function of the metal, the threshold
wavelength of the metal, and the retarding potential difference
required to stop the emission of electrons.

42.37 [I] What are the speed and momentum of a 500-nm photon?

42.38 [II] An X-ray beam with a wavelength of exactly 5.00 × 10-14 m
strikes a proton that is at rest (m = 1.67 × 10-27 kg). If the X-rays



are scattered through an angle of 110°, what is the wavelength of
the scattered X-rays?

42.39 [III] A photon produces an electron and a positron, each of which has
a kinetic energy of 220 keV even when they are separated by a
great distance. Find the energy and wavelength of the photon.

42.40 [II] Show that the de Broglie wavelength of an electron accelerated
from rest through a potential difference of V volts is  nm.
Ignore relativistic effects and take a look at Problem 42.13.

42.41 [II] Compute the de Broglie wavelength of an electron that has been
accelerated through a potential difference of 9.0 kV. Ignore
relativistic effects.

42.42 [III] What is the de Broglie wavelength of an electron that has been
accelerated through a potential difference of 1.0 MV? (You must
use the relativistic mass and energy expressions at this high
energy.)

42.43 [II] It is proposed to send a beam of electrons through a diffraction
grating. The electrons have a speed of 400 m/s. How large must
the distance between slits be if a strong beam of electrons is to
emerge at an angle of 25° to the straight-through beam?

ANSWERS TO SUPPLEMENTARY PROBLEMS

42.19 [I] Since E = hf, the energy doubles.

42.20 [I] Since E = hf = hc/λ, the energy is halved.

42.21 [I] (6.626 × 10-34 J·s)/(1.6022 × 10-19 J/eV) = 4.136 × 10-15 eV.s

42.22 [I] hc = (4.136 × 10-15 eV·s)(2.998 × 1017 nm/s) = 1240 eV·nm

42.23 [I] E = hc/λ = (1240 eV. nm)/(700 nm) = 1.77 eV

42.24 [I] E = hf = hc/λ = (6.626 × 10-34 J·s)(2.998 × 108 m/s)/(589.3 × 10-9

m) = 3.371 × 10-19 J



42.25 [I] E = hf = hc/λ; λ = (1240 eV·nm)/(2.0 eV) = 620 nm

42.26 [I] E = hf = (4.136 × 10-15 eV·s) f = (4.0 eV); f = 9.67 × 1014 Hz =
967 THz

42.27 [I] p = h/λ; hf/c = (6.626 × 10-34 J · s)(410 × 1012)/(2.998 × 108 m/s) =
9.062 × 10-28 kg · m/s

42.28 [I] 4.41 × 10-19 J = 2.76 eV

42.29 [I] λ = h/meu = (6.626 × 10-34 J × s)/(9.109 × 10-31 kg)(2.2 × 103 m/s)
= 3.3 × 10-7 m

42.30 [I] KE of the electron is zero; hf = E = φ; from Table 42-1, φPb = 4.14
eV.

42.31 [I] KE of the electron is zero; hf = E = φ = hc/λ from Table 42-1, φFe
= 4.50 eV; hence (1240 eV · nm)/(4.50 eV) = 275.6 nm = 276 nm.

42.32 [I] 2.07 nm

42.33 [I] 5.9 × 1019

42.34 [I] 1.82 eV

42.35 [II] 3.38 eV, 3.38 V

42.36 [II] 6 × 105 m/s

42.37 [II] 5.27 eV, 235 nm, 3.00 V

42.38 [I] 2.998 × 108 m/s, 133 × 10-27 kg·m/s

42.39 [II] 5.18 × 10-14 m

42.40 [III] 1.46 MeV, 8.49 × 10-13 m

42.41 [II] 1.3 × 10-11 m

42.42 [III] 8.7 × 10-13 m

42.43 [II] n(4.3 × 10-6 m), where n = 1, 2, 3,….



The Hydrogen Atom

The Hydrogen Atom has a diameter of about 0.1 nm; it consists of a proton
as the nucleus (with a radius of about 10-15 m) and a single electron whirling
around it.

Electron Orbits: The first effective model of the atom was introduced by
Niels Bohr in 1913. Although it has been surpassed by quantum mechanics,
many of its simple results are still valid. The earliest version of the Bohr
model pictured electrons in circular orbits around the nucleus. The hydrogen
atom was then one electron circulating around a single proton. For the
electron’s de Broglie wave to resonate or “fit” (see Fig. 42-2) in an orbit of
radius r, the following must be true (see Problem 42.18):

where n is an integer and . The quantity meunrn is the angular
momentum of the electron in its nth orbit. The speed of the electron is υ, its
mass is m, and h is Planck’s constant, 6.63 × 10-34 J·s.

The centripetal force that holds the electron in orbit is supplied by
Coulomb attraction between the nucleus and the electron. Hence, 

 and

Simultaneous solution of these two equations gives the radii of stable orbits
as rn = (0.052 9 nm)n2. The energy of the atom when it is in the nth state



(i.e., with its electron in the nth orbit configuration) is

As in Problems 42.17 and 42.18, the energy is quantized because a stable
configuration corresponds to a resonance form of the bound system. For a
nucleus with charge Ze orbited by a single electron, the corresponding
relations are

where Z is called the atomic number of the nucleus.

Energy-Level Diagrams summarize the allowed energies of a system. On a
vertical energy scale, the allowed energies are shown by horizontal lines.
The energy-level diagram for hydrogen is shown in Fig. 43-1. Each
horizontal line represents the energy of a resonance state of the atom. The
zero of energy is taken to be the ionized atom—that is, the state in which the
atom has an infinite orbital radius. As the electron falls closer to the nucleus,
its potential energy decreases from the zero level, and thus the energy of the
atom is negative as indicated. The lowest possible state, n = 1, corresponds
to the electron in its least energetic, smallest possible orbit; it is called the
ground state.

Emission of Light: When an isolated atom relaxes from one energy level to
a lower one, a photon is emitted. This photon carries away the energy lost
by the atom in its transition to the lower energy state. The wavelength and
frequency of the photon are given by



Fig. 43-1

The emitted radiation has a precise wavelength and gives rise to a single
spectral line in the emission spectrum of the atom. It is convenient to
remember that a 1240 nm photon has an energy of 1 eV. Moreover, photon
energy varies inversely with wavelength.

The Spectral Lines emitted by excited isolated hydrogen atoms occur in
series. Typical is the series that appears at visible wavelengths, the Balmer
series shown in Fig. 43-2. Other series exist; one, in the ultraviolet, is called
the Lyman series; there are others in the infrared, the one closest to the
visible portion of the spectrum being the Paschen series. Their wavelengths
are given by simple formulas:

where R = 1.097 4 × 107 m-1 is called the Rydberg constant.

Origin of Spectral Series: The Balmer series of lines in Fig. 43-2 arises
when an electron in the atom descends from higher states to the n = 2 state.
The transition from n = 3 to n = 2 gives rise to a photon energy ΔE3,2 = 1.89
eV, which is equivalent to a wavelength of 656 nm, the first line of the
series. The second line originates in the transition from n = 4 to n = 2. The



series limit line represents the transition from n = ∞ to n = 2. Similarly,
transitions ending in the n = 1 state give rise to the Lyman series; transitions
that end in the n = 3 state give lines in the Paschen series and there are two
other series as well.

Absorption of Light: An atom in its ground state can absorb a photon in a
process called resonance absorption only if that photon will raise the atom
to one of its allowed energy levels.

Fig. 43-2

PROBLEM SOLVING GUIDE

Remember that hc = (1240 eV ∙ nm) from the last chapter; it will come in
handy again here. Some of the calculations require long strings of numerical
manipulations—check your work several times. Watch out for numbers
raised to various powers. Keep in mind that 1 J >> 1 eV. When dealing with
energy levels, notice that the 1st excited state corresponds to n = 2, the 2nd
to n = 3, and so on.



SOLVED PROBLEMS

43.1 [II]  What wavelength does a hydrogen atom emit as its excited electron
descends from the n = 5 state to the n = 2 state? Give your answer
to three significant figures.

From the Bohr model we know that the energy levels of the
hydrogen atom are given by En = −13.6/n2eV, and therefore

E5 = -0.54 eV   and   E2 = -3.40 eV

The energy difference between these states is 3.40 - 0.54 = 2.86
eV. Because 1240 nm corresponds to 1.00 eV in an inverse
proportion (i.e., the more energetic the photon, the shorter the
wavelength), we have, for the wavelength of the emitted photon,

43.2 [II]  When a hydrogen atom is bombarded, the atom may be raised into
a higher energy state. As the excited electron falls back to the
lower energy levels, light is emitted. What are the three longest-
wavelength spectral lines emitted by the hydrogen atom as it
returns to the n = 1 state from higher energy states? Give your
answers to three significant figures.

We are interested in the following transitions (see Fig. 43-1):

To find the corresponding wavelengths, proceed as in Problem
43.1, or use ∆E = hf = hc/λ. For example, for the n = 2 to n = 1
transition,



The other lines are found in the same way to be 102 nm and 96.9
nm. These are the first three lines of the Lyman series.

43.3 [I]    The series limit wavelength of the Balmer series is emitted as the
electron in the hydrogen atom falls from the n = ∞ state to the n =
2 state. What is the wavelength of this line (to three significant
figures)?

From Fig. 43-1, ∆E = 3.40 - 0 = 3.40 eV. We find the
corresponding wavelength in the usual way from ∆E = hc/λ. The
result is 365 nm.

43.4 [I]    What is the greatest wavelength (lowest frequency) of radiation
that will ionize unexcited hydrogen atoms?

The incident photons must have enough energy to raise the atom
from the n = 1 level to the n = ∞ level when absorbed by the atom.
Because E∞-E1 = 13.6 eV, we can use E∞ - E1 = hc/λ, to find the
wavelength as 91.2 nm. Wavelengths shorter than this would not
only remove the electron from the atom but would add KE to the
removed electron.

43.5 [I]    The energy levels for singly ionized helium atoms (atoms from
which one of the two electrons has been removed) are given by En
= (-54.4/n2) eV. Construct the energy-level diagram for this
system.

See Fig. 43-3.



Fig. 43-3

43.6 [I]     What are the two longest wavelengths of the Balmer series for
singly ionized helium atoms?

The pertinent energy-level diagram is shown in Fig. 43-3. Recall
that the Balmer series corresponds to transitions from higher states
to the n = 2 state. From the diagram, the two smallest-energy
transitions to the n = 2 states are

Using the fact that 1 eV corresponds to 1240 nm, we find the
corresponding wavelengths to be 163 nm and 122 nm; both
wavelengths are in the far ultraviolet or long X-ray region.

43.7 [II]  Unexcited hydrogen atoms are bombarded with electrons that have
been accelerated through 12.0 V. What wavelengths will the atoms
emit?

When an atom in the ground state is given 12.0 eV of energy, the
most these electrons can supply, the atom can be excited no higher
than 12.0 eV above the ground state. Only one state exists in this
energy region, the n = 2 state. Hence, the only transition possible
is

The only emitted wavelength will be

which is the longest-wavelength line in the Lyman series.

43.8 [II]  Unexcited hydrogen gas is an electrical insulator because it
contains no free electrons. What maximum-wavelength photon
beam incident on the gas can cause the gas to conduct electricity?



The photons in the beam must ionize the atom so as to produce
free electrons. (This is called the atomic photoelectric effect.) To
do this, the photon energy must be at least 13.6 eV, and so the
maximum wavelength is

which is the series limit for the Lyman series.

SUPPLEMENTARY PROBLEMS

43.9 [I] A bright yellow sodium emission line has a wavelength of 587.561
8 nm. Determine the difference between the atom’s two energy
levels defining the transition. Give your answer in eV to four
significant figures.

43.10 [I] Molecules have low-energy vibration modes, and they can make
transitions from one such state to another that result in the emission
of infrared radiant energy. Suppose two such states are separated
by 0.015 eV, and the molecule descends in energy from the higher
to the lower. Determine the wavelength of the photon that would be
emitted.

43.11 [I] Derive the expression

for the radius of the nth electron orbit where h = h/2π. [Hint: Study
Eqs. (43.1) and (43.2).]

43.12 [I] When n = 1 in Eq. (43.9), we get the radius of the lowest energy
orbit (the ground state orbit) called the Bohr radius. Numerically
that’s



Using Eq. (43.9), show that the diameter of a hydrogen atom is
just about 0.10 nm, thereby confirming Eq. (43.10) to four
significant figures.

43.13 [I] Show that for the hydrogen atom as described by the Bohr model,
the allowed orbital radii are given by

By the way, here n is known as the principal quantum number.
[Hint: Study the previous two problems.]

43.14 [I] Show that for the hydrogen atom as described by the Bohr model,
the classical KE of the electron  is given by

[Hint: Study Eq. (43.2).]

43.15 [I] In the Bohr theory the total energy of the orbiting electron, En,
equals the sum of the electron’s KE plus its PE, where from
Coulomb’s Law, PE = -k0e2/rn. Show that

The minus sign arises because this is a bound state and the PE is
negative. [Hint: Study the previous problem.]

43.16 [I] In the Bohr theory the total energy of the orbiting electron is En.
Show that

The minus sign arises because this is a bound state and the PE is
negative. [Hint: Study the previous problem.]

43.17 [I] Verify Eq. (43.3). [Hint: Use Eq. (43.14).]

43.18 [I] How much energy should be pumped into a hydrogen atom to raise
it from its ground state into its 2nd excited state? [Hint: The 2nd



excited state corresponds to n = 3; examine Fig. 43-1.]

43.19 [I] A hydrogen atom in its 1st excited state drops down to its ground
state emitting a photon in the process. Find the energy of that
photon. [Hint: Study Eq. (43.5).]

43.20 [II] A hydrogen atom in its 1st excited state drops down to its ground
state emitting a photon in the process. Calculate the wavelength of
that photon. [Hint: Study Eq. (43.5).]

43.21 [I] One spectral line in the hydrogen spectrum has a wavelength of
821 nm. What is the energy difference between the two states that
gives rise to this line?

43.22 [II] What are the energies of the two longest-wavelength lines in the
Paschen series for hydrogen? What are the corresponding
wavelengths? Give your answers to two significant figures.

43.23 [I] What is the wavelength of the series limit line for the hydrogen
Paschen series? Consult Problem 43.3 for an explanation of “series
limit.”

43.24 [II] The lithium atom has a nuclear charge of +3e. Find the energy
required to remove the third electron from a lithium atom that has
already lost two of its electrons. Assume the third electron to be
initially in the ground state.

43.25 [II] Electrons in an electron beam are accelerated through a potential
difference V and are incident on hydrogen atoms in their ground
state. What is the maximum value for V if the collisions are to be
perfectly elastic?

43.26 [II] What are the three longest photon wavelengths that singly ionized
helium atoms (in their ground state) will absorb strongly? (See
Fig. 43-3.)

43.27 [II] How much energy is required to remove the second electron from
a singly ionized helium atom? What is the maximum wavelength
of an incident photon that could tear this electron from the ion?

43.28 [II] In the spectrum of singly ionized helium, what is the series limit
for its Balmer series?



ANSWERS TO SUPPLEMENTARY PROBLEMS

43.9 [I] ΔE = hc/λ = (1240 eV. nm)/(587.561 8 nm) = 2.110 eV

43.10 [I] ΔE = hc/λ; λ = (1240 eV. nm)/(0.015 eV) = 82.7 μm

43.11 [I] From Eq. (43.2), ; now solve Eq. (43.1) for u and use
it to replace u squared.

43.12 [I] h = 6.626 × 10-34 J · s; me = 9.109 × 10-31 kg; k0 = 8.988 × 109

N·m2/C2; e = 1.6022 × 10-19 C; r1 = r1 = l2/h2 mekoe2 = 5.291 × 10-

11 = 0.052 91 nm

43.13 [I] 

43.14 [I] From Eq. (43.2), 

43.15 [I] En = KE + PE = k0e2/2rn - K0e2/rn

43.16 [I] Use Eq. (43.9), 

43.17 [I] 

43.18 [I] E3 - E1 = (-1.51 eV) - (-13.6 eV) = 12.1 eV

43.19 [I] En - E1 = hf = (-3.4 eV) - (-13.6 eV) = +10.2 eV

43.20 [II] En - E1 = hf = (-3.4 eV) - (-13.6 eV) = +10.2 eV = hc/λ = (1240
eV. nm)/λ = (1240 eV. nm)/(10.2 eV) = 121.6 nm

43.21 [I] 1.51 eV

43.22 [II] 0.66 eV and 0.97 eV, 1.9 × 10-6 m and 1.3 × 10-6 m

43.23 [I] 821 nm

43.24 [II] 122 eV

43.25 [II] <10.2 V

43.26 [II] 30.4 nm, 25.6 nm, 24.3 nm

43.27 [II] 54.4 eV, 22.8 nm



43.28 [II] 91 nm



Multielectron Atoms

A Neutral Atom whose nucleus carries a positive charge of Ze has Z
electrons. When the electrons have the least energy possible, the atom is in its
ground state. The state of an atom is specified by the quantum numbers for
its individual electrons.

The Quantum Numbers that are used to specify the parameters of an atomic
electron are as follows:

•  The principal quantum number n specifies the orbit, or shell, in which
the electron is to be found. In the hydrogen atom, it specifies the
electron’s energy via En = −13.6/n2 eV.

•  The orbital quantum number (or azimuthal quantum number) ℓ
specifies the angular momentum L of the electron in its orbit:

where h is Planck’s constant, and ℓ = 0, 1, 2,…, n − 1.
•  The magnetic quantum number mℓ describes the orientation of the

orbital angular momentum vector relative to the z direction, the direction
of an impressed magnetic field:

where mℓ = 0, ±1, ±2,…, ±ℓ.
•  The spin quantum number ms has allowed values of ±  where the spin



angular momentum Sz is given by

The Pauli Exclusion Principle maintains that no two electrons in the same
atom can have the same set of quantum numbers. In other words, no two
electrons can be in the same state.

Electron Shells: Atomic electrons are ordered in specific groupings called
shells and within them subshells. Each shell has a particular value of n, the
principal quantum number. All members of any shell have the same n.

Recall that the orbital quantum number ℓ has only positive values and ranges
from (n − 1) to 0; the magnetic quantum number mℓ ranges from −ℓ to 0 to
+ℓ; and the spin quantum number ms is either +½ or −½. All members of the
same subshell (see Table 44-1) have both the same n and ℓ.

TABLE 44-1
Atomic Quantum Numbers

TABLE 44-2
Electron Subshell Designations

The designations are abbreviations for sharp, principal, diffuse, fundamental,
and so on. There are 2 electron states in each s subshell, 6 electron states in
each p subshell, 10 electron states in each d subshell, and so forth (see Table
44-2). Thus a p subshell is filled when it contains 6 electrons. Within a
subshell an orbital is specified by three quantum numbers: n, ℓ, and mℓ. An



orbital can contain only two electrons, one spin-up and one spin-down.
Figure 44-1 shows all the electron states for n = 1 and n = 2. The group on the
left is designated 1s2, wherein n = 1 and there are 2 available states. The
group on the right is designated 2s22p6, wherein n = 2 and there are 2 + 6
available states. And together—1s2 · 2s22p6—they represent the ground state
configuration for a 10-electron atom, namely, neon. There can be up to 2n2

states in a given shell.

Fig. 44-1

Unfortunately things get a little messy as Z gets larger (and n gets larger) and
the orbitals become more energetic. The most common ground state
configurations follow the pattern

1s  2s  2p  3s  3p  4s  3d  4p  5s  4d  5p  6s  4f  5d  6p  7s

but there are several exceptions, especially beyond Z = 56. Figure 44-2 is a
nice way to remember the sequence of filled subshells.



Fig. 44-2

PROBLEM SOLVING GUIDE

When dealing with electron shells, the total number of electrons must equal
the atomic number (Z) of the atom. The principal quantum number n is
always positive; ℓ ranges from (n − 1) to 0; mℓ ranges from −ℓ to 0 to +ℓ; and
ms is either +½ or −½.

SOLVED PROBLEMS

44.1 [II]    Estimate the energy required to remove an n = 1 (i.e., inner-shell)



electron from a gold atom (Z = 79).

Because an electron in the innermost shell of the atom is not much
influenced by distant electrons in outer shells, we can consider it
to be the only electron present. Then its energy is given
approximately by an appropriately modified version of the energy
formula of Chapter 43 that takes into consideration the charge (Ze)
of the nucleus. With n = 1, that formula—which was given on the
first page of Chapter 43—is En = −13.6Z2/n2, whereupon

E1 = −13.6(79)2 = −84 900 eV = −84.9 keV

To tear the electron loose (i.e., remove it to the E∞ = 0 level), we
must give it an energy of about 84.9 keV.

44.2 [II]    What are the quantum numbers for the electrons in the lithium
atom (Z = 3) when the atom is in its ground state?

Start with n = 1 and go up from there until you run out of
electrons. Keeping in mind that ℓ = 0, 1, 2, …, (n − 1) and mℓ = 0,
±1, ±2, …, ±ℓ while ms = ± , the Pauli Exclusion Principle tells
us that the lithium atom’s three electrons can take on the following
quantum numbers:

Notice that, when n = 1, ℓ must be zero and mℓ must be zero
(why?). Then there are only two n = 1 possibilities, and the third
electron has to go into the n = 2 level. Since it is in the second
Bohr orbit, it is more easily removed from the atom than an n = 1
electron. That is why lithium ionizes easily to Li+.

44.3 [II]    Why is sodium (Z = 11) the next univalent atom after lithium?



Sodium has a single electron in the n = 3 shell. To see why this is
necessarily so, notice that the Pauli Exclusion Principle allows
only two electrons in the n = 1 shell. The next eight electrons can
fit in the n = 2 shell, as follows:

The eleventh electron must go into the n = 3 shell, from which it is
easily removed to yield Na+.

44.4 [II]    (a) Estimate the wavelength of the photon emitted as an electron
falls from the n = 2 shell to the n = 1 shell in the gold atom (Z =
79). (b) About how much energy must bombarding electrons have
to excite gold to radiate this emission line?

(a) As noted in Problem 44.1, to a first approximation the energies
of the innermost electrons of a large-Z atom are given by En =
−13.6 Z2/n2 eV. Thus,

This corresponds to a photon with

It is clear from this result that inner-shell transitions in high-Z
atoms give rise to the emission of X-rays.

(b) Before an n = 2 electron can fall to the n = 1 shell, an n = 1
electron must be thrown to an empty state of large n, which we
approximate as n = ∞ (with E∞ = 0). This requires an energy



The bombarding electrons must thus have an energy of about
84.9 keV.

44.5 [II]    Suppose electrons had no spin, so that the spin quantum number
did not exist. If the Exclusion Principle still applied to the
remaining quantum numbers, what would be the first three
univalent atoms?

The electrons would take on the following quantum numbers:

Each electron marked “univalent” is the first electron in a new
shell. Since an electron is easily removed if it is the outermost
electron in the atom, atoms with that number of electrons are
univalent. They are the atoms with Z = 1 (hydrogen), Z = 2
(helium), and Z = 6 (carbon). Can you show that Z = 15
(phosphorus) would also be univalent?

44.6 [II]    Electrons in an atom that have the same value for ℓ but different
values for mℓ and ms are said to be in the same subshell. How
many electrons exist in the ℓ = 3 subshell?

Because mℓ is restricted to the values 0, ±1, ±2, ±3, and ms = ± 
only, the possibilities for ℓ = 3 are

which gives 14 possibilities. Therefore, 14 electrons can exist in
this subshell.



44.7 [II]    An electron beam in an X-ray tube is accelerated through 40 kV
and is incident on a tungsten target. What is the shortest
wavelength emitted by the tube?

When an electron in the beam is stopped by the target, the photons
emitted have an upper limit for their energy, namely, the energy of
the incident electron. In this case, that energy is 40 keV. The
corresponding photon has a wavelength given by

SUPPLEMENTARY PROBLEMS

44.8 [I]      List all four quantum numbers for the single hydrogen (Z = 1)
electron in the ground state. [Hint: It is in the 1s orbital of the K-
shell.]

44.9 [I]      The single electron of a hydrogen atom can exist in a variety of
excited states beyond the lowest-energy ground state. How many
states would be available when the principal quantum number
equals 4 and the orbital quantum number equals 2? [Hint: n = 4
and ℓ = 2.]

44.10 [I]    State the quantum numbers (n, ℓ, mℓ, ms) for each electron in the
ground state of helium (Z = 2). Explain your answer.

44.11 [I]    Explain how it is that the maximum number of electrons in the ℓth
subshell is 2(2ℓ + 1).

44.12 [I]    Verify that Fig. 44-1 shows that the number of electrons in a shell
can be up to 2n2.

44.13 [I]    Argon has a ground state configuration of 1s2·2s22p6·3s23p6 How
many electrons does an argon atom possess? What can you say



about argon and its last p subshell?

44.14 [I]    Aluminum has a ground state configuration of 1s2·2s22p6·3s23p1.
How many electrons does an aluminum atom possess? What is Z
for aluminum? How many electrons have a principal quantum
number of 2?

44.15 [I]    In the Periodic Table the far right column contains the noble
gases, noble because they stay away from combining with other
elements. Helium (Z = 2) has 2 electrons that fill a 1s shell. Neon
(Z = 10) has 10 electrons (1s2·2s22p6), and its outer 2p subshell is
filled. Argon (Z = 18) is next (1s2·2s22p6·3s23p6), and krypton (Z
= 36) follows it in the column. In addition to the argon electron
configuration, krypton adds 4s, 3d, and 4p subshells. How many
electrons are in each of these subshells? [Hint: The total number
must be 36. Study Table 44-2.]

44.16 [I]    Specify the ground state electron configuration for silicon (Si) for
which Z = 14. Explain your answer. Are all the shells filled?

44.17 [I]    Silicon is a semiconductor, as is carbon (C) for which Z = 6.
Specify the ground state electron configuration. Why do they
behave similarly?

44.18 [II]  If there were no mℓ quantum number, what would be the first four
univalent atoms?

44.19 [II]  Helium has a closed (completely filled) outer shell and is
nonreactive because the atom does not easily lose an electron.
Show why neon (Z = 10) is the next nonreactive element.

44.20 [II]  It is desired to eject an electron from the n = 1 shell of a uranium
atom (Z = 92) by means of the atomic photoelectric effect.
Approximately what is the longest-wavelength photon capable of
doing this?



ANSWERS TO SUPPLEMENTARY PROBLEMS

44.8 [I]      n = 1, ℓ = 0, mℓ = 0, ms= ±½

44.9 [I]      Since n = 4 and ℓ = 2, this a 4d subshell; mℓ is at most +2, +1, 0,
−1, −2, each of which can have spin +½ or −½, making 10 states.

44.10 [I]    The two electrons share the same orbital, one spin-up and the
other spin-down; hence (1, 0, 0, +½) and (1, 0, 0, −½)

44.11 [I]    ℓ ranges from (n − 1) to 0, there being n such values of ℓ. Each
value of ℓ results in 2ℓ + 1 values of mℓ. each of which can have 2
electrons for a total of 2(2ℓ + 1).

44.12 [I]    The n = 1 shell corresponds to 1s2, and there are 2 available states,
which is 2n2. The n = 2 shell corresponds to 2s22p6, and there are
2 + 6 available states, which is again 2n2.

44.13 [I]    1s2·2s22p6·3s23p6; that is, 2 + 2 + 6 + 2 + 6 = 18; the p subshell is
filled, and argon is not very reactive.

44.14 [I]    1s2·2s22p6·3s23p1; that is, 2 + 2 + 6 + 2 + 1 = 13; Z = 13; 8

44.15 [I]    Because it is essentially nonreactive, its subshells are filled; 4s2,
3d10, 4p6, thereby containing 2, 10, and 6 additional electrons;
hence we have 1s22s22p63s23p64s23d104p6.

44.16 [I]    There are 14 electrons, and so for n = 3, there will be 2n2 states
(viz., 18) in the shell; ℓ has only positive values and ranges from
(n − 1) or 2 to 0, and by Table 44-2 there can be s, p, and d
subshells; each s can have 2, and each p can have 6, and each d
can have 10; thus 1s2 · 2s22p6·3s23p2; notice that the n = 3 shell is
unfilled.

44.17 [I]    There are 6 electrons, and so for n = 2, there will be 2n2 states
(viz., 8) in the shell; ℓ has only positive values and ranges from (n



− 1) or 1 to 0, and by Table 44-2 there can be s and p subshells;
each s can have 2, and each p can have 6; thus 1s2·2s22p6; notice
that the n = 2 shell is unfilled and looks just like the n = 3 shell in
the previous problem.

44.18 [II]  H, Li, N, Al

44.20 [II]  0.010 8 nm



Subatomic Physics

The Nucleus of an atom is a positively charged entity at the atom’s center.
Its radius is roughly 10−15 m, which is about 10−5 as large as the radius of
the atom. Hydrogen is the lightest and simplest of all the atoms. Its nucleus
is a single proton. All other nuclei contain both protons and neutrons.
Protons and neutrons are collectively called nucleons. Although the
positively charged protons repel each other, the much stronger, short-range
nuclear force (which is a manifestation of the more fundamental strong
force) holds the nucleus together. The nuclear attractive force between
nucleons decreases rapidly with particle separation and is essentially zero
for nucleons more than about 5 × 10−15 m apart.

Nuclear Charge and Atomic Number: Each proton within the nucleus
carries a charge +e, whereas the neutrons carry no electromagnetic charge.
If there are Z protons in a nucleus, then the charge on the nucleus is +Ze. We
call Z the atomic number of that nucleus.

Because normal atoms are neutral electrically, the atom has Z electrons
outside the nucleus. These Z electrons determine the chemical behavior of
the atom. As a result, all atoms of the same chemical element have the same
value of Z. For example, all hydrogen atoms have Z = 1, while all carbon
atoms have Z = 6.

Atomic Mass Unit (u): A convenient mass unit used in nuclear calculations
is the atomic mass unit (u). By definition, 1 u is exactly 1/12 of the mass of
the common form of carbon atom found on the Earth. It turns out that

Table 45-1 lists the masses of some common particles and nuclei, as well



as their charges.

TABLE 45-1

The Mass (or Nucleon) Number (A) of an atom is equal to the number of
nucleons (neutrons plus protons) in the nucleus of the atom. Because each
nucleon has a mass close to 1 u, the mass number A is nearly equal to the
nuclear mass in atomic mass units. In addition, because the atomic electrons
have such small mass, A is nearly equal to the mass of the atom in atomic
mass units.

Where N is the number of neutrons.

Isotopes: The number of neutrons in the nucleus has very little effect on the
chemical behavior of all but the lightest atoms. In nature, atoms of the same
element (same Z) often exist that have unlike numbers of neutrons in their
nuclei. Such atoms are called isotopes of each other. For example, ordinary
oxygen consists of three isotopes that have mass numbers 16, 17, and 18.
Each of the isotopes has Z = 8, or eight protons in the nucleus. Hence, these
isotopes have the following numbers of neutrons in their nuclei: 16 − 8 = 8,
17 − 8 = 9, and 18 − 8 = 10. It is customary to represent the isotopes in the
following way: , or simply as 16O, 17O, and 18O, where it is understood
that oxygen always has Z = 8.

In keeping with this notation, we designate the nucleus having mass
number A and atomic number Z by the symbolism

Binding Energies: The mass of an atom is not equal to the sum of the
masses of its component protons, neutrons, and electrons. Imagine a
reaction in which free electrons, protons, and neutrons combine to form an
atom; in such a reaction, you would find that the mass of the atom is slightly



less than the combined masses of the component parts, and that a substantial
amount of energy is released when the reaction occurs. The loss in mass is
exactly equal to the mass equivalent of the released energy, according to
Einstein’s equation ΔE0 = (∆m)c2. Conversely, this same amount of energy,
ΔE0 would have to be given to the atom to separate it completely into its
component particles. We call ΔE0 the binding energy of the atom. A mass
loss of ∆m = 1 u is equivalent to

of binding energy.
The percentage “loss” of mass is different for each isotope of any

element. The atomic masses of some of the lighter isotopes are given in
Table 45-2. These masses are for neutral atoms and include the orbital
electrons.

TABLE 45-2

Radioactivity: Nuclei found in nature with Z greater than that of lead, 82,
are unstable or radioactive. Many artificially produced elements with
smaller Z are also radioactive. A radioactive nucleus spontaneously ejects
one or more particles in the process of transforming into a different nucleus.

The stability of a radioactive nucleus against spontaneous decay is
measured by its half-life t1/2. The half-life is defined as the time in which
half of any large sample of identical nuclei will undergo decomposition. The
half-life is a fixed number for each isotope.

Radioactive decay is a random process. No matter when one begins to
observe a material, only half the material will remain unchanged after a time
t1/2; after an additional time of t1/2 only  of the material will remain
unchanged. After n half-lives have passed, only  of the material will
remain unchanged.

A simple relation exists between the number N of atoms of radioactive
material present and the number ∆N that will decay in a short time ∆t. It is



where λ, the decay constant, is related to the half-life t1/2 through

The decay constant has the unit of s−1, and can be thought of as the
fractional disintegration rate. The quantity ΔN/Δt, which is the rate of
disintegrations, is called the activity (R) of the sample. It is equal to λN, and
therefore it steadily decreases with time. The SI unit for activity is the
becquerel (Bq), where 1 Bq = 1 decay/s.

Nuclear Equations: In a balanced equation the sum of the subscripts
(atomic numbers) must be the same on the two sides of the equation. The
sum of the superscripts (mass numbers) must also be the same on the two
sides of the equation. Thus the equation for the primary radioactivity of
radium is

Many nuclear processes may be indicated by a condensed notation, in
which a light bombarding particle and a light product particle are
represented by symbols in parentheses between the symbols for the initial
target nucleus and the final product nucleus. The symbols n, p, d, α, e−, and
γ are used to represent neutron, proton, deuteron ( ), alpha, particle,
electron, and gamma rays (photons), respectively. Here are three examples
of corresponding long and condensed notations:

The slow neutron is a very efficient agent in causing transmutations,
since it has no positive charge and hence can approach the nucleus without
being repelled. By contrast, a positively charged particle such as a proton
must have a high energy to cause a transformation. Because of their small
masses, even very high-energy electrons are relatively inefficient in causing
nuclear transmutations.



High-Energy Physics: Our everyday world of trees and buildings and
people is made up almost entirely of three fundamental material particle
types: the electron, the u-quark, and the d-quark. Along with several kinds
of tiny neutrinos, these constitute the first generation of matter. At much
higher temperatures and hence greater energies, there exist a number of
additional exotic forms of matter (see Table 45-3). All subatomic material
particles have their corresponding antiparticles with which they can
annihilate into a puff of photons.

The electron is a stable member of the lepton family (from the Greek for
“slight”), all of which electrons are fundamental particles. By contrast, the
proton and neutron are members of a family of particles called hadrons,
from the Greek for “bulky.” They are each composed of three tiny
fundamental particles known as quarks (see Table 45-4), and as such are
part of the 3-quark subgroup called baryons. The ordinary, everyday quarks
that make up the nuclei of all the atoms in you, and everything around you,
are the up and down quarks (d and u). The proton is stable, and the neutron
while locked in a nucleus can be stable as well; that’s why the Earth has
lasted billions of years. All the other hadrons exist for only a minute amount
of time (see Table 45-3). Another exotic subgroup is composed of short-
lived mesons. These particles are formed of a quark and an antiquark.
Mesons can be produced in the laboratory and naturally in outer space.

TABLE 45-3

TABLE 45-4



PROBLEM SOLVING GUIDE

The number of protons (Z) identifies the element. All isotopes of that
element have the same Z. The total number of nucleons (A) provides the
“weight” of the nucleus, where A = Z + N, N being the number of neutrons.
For a given Z, the value of N specifies the isotopes.



SOLVED PROBLEMS

45.1 [II]  The radius of a carbon nucleus is about 3 × 10−15 m and its mass is
12 u. Find the average density of the nuclear material. How many
more times dense than water is this?

45.2 [II]  In a mass spectrograph, the masses of ions are determined from
their deflections in a magnetic field. Suppose that singly charged
ions of chlorine are shot perpendicularly into a magnetic field B =
0.15 T with a speed of 5.0 × 104 m/s. (The speed could be
measured by use of a velocity selector.) Chlorine has two major
isotopes, of masses 34.97 u and 36.97 u. What would be the radii
of the circular paths described by the two isotopes in the magnetic
field? (See Fig. 45-1.)

Fig. 45-1

The masses of the two isotopes are

Because the magnetic force qυB must provide the centripetal force
mυ2/r, we have



Substituting the values for m found above gives the radii as 0.17 m
and 0.18 m.

45.3 [I]     How many protons, neutrons, and electrons are there in (a) 3He,
(b) 12C, and (c) 206Pb?
(a) The atomic number of He is 2; therefore, the nucleus must

contain 2 protons. Since the mass number of this isotope is 3,
the sum of the protons and neutrons in the nucleus must equal
3; therefore, there is 1 neutron. The number of electrons in the
atom is the same as the atomic number, 2.

(b) The atomic number of carbon is 6; hence, the nucleus must
contain 6 protons. The number of neutrons in the nucleus is
equal to 12 − 6 = 6. The number of electrons is the same as the
atomic number, 6.

(c) The atomic number of lead is 82; hence, there are 82 protons in
the nucleus and 82 electrons in the atom. The number of
neutrons is 206 − 82 = 124.

45.4 [II]  What is the binding energy of the atom 12C?

One atom of 12C consists of 6 protons, 6 electrons, and 6 neutrons.
The mass of the uncombined protons and electrons is the same as
that of six 1H atoms (if we ignore the very small binding energy of
each proton-electron pair). The component particles may thus be
considered as six 1H atoms and six neutrons. A mass balance may
be computed as follows.

45.5 [II]  Cobalt-60 (60Co) is often used as a radiation source in medicine. It



has a half-life of 5.25 years. How long after a new sample is
delivered will its activity have decreased (a) to about one-eighth
its original value? (b) to about one-third its original value? Give
your answers to two significant figures.

The activity is proportional to the number of undecayed atoms
(ΔN/Δt = λN).

(a) In each half-life, half the remaining sample decays. Because 
, three half-lives, or 16 years, are required for the sample

to decay to one-eighth its original strength.
(b) Using the fact that the material present decreased by one-half

during each 5.25 years, we can plot the graph shown in Fig. 45-
2. From it, we see that the sample decays to 0.33 its original
value after a time of about 8.3 years.

Fig. 45-2

45.6 [II]  Solve Problem 45.5(b) by using the exponential function.

The curve in Fig. 45-2 is an exponential decay curve, and it is
expressed by the equation

where λ is the decay constant, and N/N0 is the fraction of the
original N0 particles that remain undecayed after a time t.



Inasmuch as λt1/2 = 0.693, λ = 0.693/t1/2 = 0.132/year and N/N0 =
0.333. Thus,

0.333 = e–0.132t/year

Take the natural logarithm of each side to find

ln(0.333) = –0.132t/year

from which t = 8.3 years.

45.7 [II]  For the situation described in Problems 45.5 and 45.6, what is N/N0
after 20 years?

As in the previous problem, where now λ = 0.132/year

from which N/N0 = 0.071.

In this and the previous problem, we used t in years because λ was
expressed in (years)−1. More often, λ would be expressed in s−1

and t would be in seconds. Be careful that the same time units are
used for t and λ.

45.8 [II]  Potassium found in nature contains two isotopes. One isotope
constitutes 93.4 percent of the whole and has an atomic mass of
38.975 u; the other 6.6 percent has a mass of 40.974 u. Compute
the atomic mass of potassium as found in nature.

The atomic mass of the material found in nature is obtained by
combining the individual atomic masses in proportion to their
abundances. The 38.975 u material is 93.4%, while the 40.974 u
material is 6.6%. Hence, in combination:

Atomic mass = (0.934)(38.975 u) + (0.066)(40.974 u) = 39.1 u

45.9 [III] The half-life of radium is 1.62 × 103 years. How many radium



atoms decay in 1.00 s in a 1.00 g sample of radium? The atomic
weight of radium is 226 kg/kmol.

A 1.00-g sample is 0.001 00 kg, which for radium of atomic
number 226 is (0.001 00/226) kmol. Since each kilomole contains
6.02 × 1026 atoms,

is the number of disintegrations per second in 1.00 g of radium.

The above result leads to the definition of the curie (Ci) as a unit
of activity:

Because of its convenient size, we shall sometimes use the curie in
subsequent problems, even though the official SI unit of activity is
the becquerel.

45.10 [III] Technetium-99 ( ) has an excited state that decays by emission
of a gamma ray. The half-life of the excited state is 360 min.
What is the activity, in curies, of 1.00 mg of this excited isotope?

Because we have the half-life (t1/2) we can determine the decay
constant since λt1/2 = 0.693. The activity of a sample is λN. In
this case,

We also know that 99.0 kg of Tc contains 6.02 × 1026 atoms. A
mass m will therefore contain [m/(99.0 kg)](6.02 × 1026) atoms.



In our case, m = 1.00 × 10−6 kg, and so

45.11 [III] How much energy must a bombarding proton possess to cause
the reaction 7Li(p,n)7Be? Give your answer to three significant
figures.

The reaction is as follows:

where the symbols represent the nuclei of the atoms indicated.
Because the masses listed in Table 45-2 include the masses of the
atomic electrons, the appropriate number of electron masses (me)
must be subtracted from the values given.

Subtracting the total reactant mass from the total product mass
gives the increase in mass as 0.001 76 u. (Notice that the electron
masses cancel out. This happens frequently, but not always.)

To create this mass in the reaction, energy must have been
supplied to the reactants. The energy corresponding to 0.001 76 u
is (931 × 0.001 76) MeV = 1.65 MeV. This energy is supplied as
KE of the bombarding proton. The incident proton must have
more than this energy because the system must possess some KE
even after the reaction, so that momentum is conserved. With
momentum conservation taken into account, the minimum KE
that the incident particle must have can be found with the
formula



where M is the mass of the target particle, and m that of the
incident particle. Therefore, the incident particle must have an
energy of at least

45.12 [II]  Complete the following nuclear equations:

(a) The sum of the subscripts on the left is 7 + 2 = 9. The subscript
of the first product on the right is 8. Hence, the second product
on the right must have a subscript (net charge) of 1. Also, the
sum of the superscripts on the left is 14 + 4 = 18. The
superscript of the first product is 17. Hence, the second product
on the right must have a superscript (mass number) of 1. The
particle with nuclear charge 1 and mass number 1 is the proton, 

.
(b) The nuclear charge of the second product particle (its

subscript) is (4 + 2) − 6 = 0. The mass number of the particle
(its superscript) is (9 + 4) − 12 = 1. Hence, the particle must be
the neutron, .

(c) The reactants  and  have a combined nuclear charge of 5
and a mass number of 10. In addition to the alpha particle, a
product will be formed of charge 5 − 2 = 3 and mass number 10
− 4 = 6. This is .

(d) The nuclear charge of the second product particle is 15 − 14 =
+1. Its mass number is 30 − 30 = 0. Hence, the particle must be
a positron, .

(e) The nuclear charge of the second product particle is 1 − 2 = −1.
Its mass number is 3 − 3 = 0. Hence, the particle must be a beta
particle (an electron), .

(f) The reactants,  and , have a combined nuclear charge of
22 and mass number of 47. The ejected product will have



charge 22 − 21 = 1, and mass number 47 − 46 = 1. This is a
proton and should be represented in the parentheses by p.

In some of these reactions a neutrino and/or a photon are
emitted. We ignore them for this discussion since the charge for
both is zero. Moreover, the mass of the photon is zero and the
mass of each of the several neutrinos, although not zero, is
negligibly small.

45.13 [II]  Uranium-238 ( ) is radioactive and decays into a succession
of different elements. The following particles are emitted before
the nucleus reaches a stable form: α, β, β, α, α, α, α, α, β, β, α, β,
β, and α (β stands for “beta particle,” e−). What is the final stable
nucleus?

The original nucleus emitted 8 alpha particles and 6 beta
particles. When an alpha particle is emitted, Z decreases by 2,
since the alpha particle carries away a charge of +2e. A beta
particle carries away a charge of −1e, and so as a result the
charge on the nucleus must increase to (Z + 1)e. We then have,
for the final nucleus,

Final Z = 92 + 6 − (2)(8) = 82
Final A = 238 − (6)(0) − (8)(4) = 206

The final stable nucleus is .

45.14 [I]     The half-life of uranium-238 is about 4.5 × 109 years, and its
end product is lead-206. We notice that the oldest uranium-
bearing rocks on Earth contain about a 50:50 mixture of 238U and
206Pb. Roughly, what is the age of these rocks?

Apparently about half the 238U has decayed to 206Pb during the
existence of the rock. Hence, the rock must have been formed
about 4.5 billion years ago.

45.15 [II]  A 5.6-MeV alpha particle is shot directly at a uranium atom (Z =
92). About how close will it get to the center of the uranium



nucleus?

At such high energies the alpha particle will easily penetrate the
electron cloud and the effects of the atomic electrons can be
ignored. We also assume the uranium atom to be so massive that
it does not move appreciably. Then the original KE of the alpha
particle will be changed into electrostatic potential energy. This
energy, for a charge q′ at a distance r from a point charge q, is
(see Chapter 25)

Equating the KE of the alpha particle to this potential energy,

where e = 1.60 × 10−19 C. We find from this that r = 4.7 × 10−14

m.

45.16 [II]  Neon-23 beta decays in the following way:

where  is an antineutrino, a particle with no charge and almost
no mass. Depending on circumstances, the energy carried away
by the antineutrino can range from zero to the maximum energy
available from the reaction. Find the minimum and maximum KE
that the beta particle  can have. Pertinent atomic masses are
22.994 5 u for 23Ne, and 22.989 8 u for 23Na. The mass of the
beta particle is 0.000 55 u.

Note that the given reaction is a nuclear reaction, while the
masses provided are those of neutral atoms. To calculate the
mass lost in the reaction, subtract the mass of the atomic
electrons from the atomic masses given. We have the following
nuclear masses:



Which gives a mass loss of 22.994 5 − 22.989 8 = 0.004 7 u.
Since 1.00 u corresponds to 931 MeV, this mass loss corresponds
to an energy of 4.4 MeV. The beta particle and antineutrino share
this energy. Hence, the energy of the beta particle can range from
zero to 4.4 MeV.

45.17 [II]  A nucleus , the parent nucleus, decays to a daughter nucleus
D by positron decay:

where v is a neutrino, a particle that has nearly zero mass and
zero charge. (a) What are the subscript and superscript for D? (b)
Prove that the mass loss in the reaction is Mp – Md – 2me, where
Mp and Md are the atomic masses of the parent and daughter.

(a) To balance the subscripts and superscripts, we must have .
(b) The table of masses for the nuclei involved is

Subtraction gives the mass loss:

(Mp – nme) – (Md – nme + 2me) = Mp – Md – 2me

Notice how important it is to keep track of the electron masses in
this and the previous problem.



SUPPLEMENTARY PROBLEMS

45.18 [I]    How many protons, neutrons, and electrons does an atom of 
possess?

45.19 [I]    Neon-23 is designated as . Where is it in the Periodic Table?
What is the value of A? Is it the most common form of neon?
How many protons and neutrons does it possess? [Hint: Study
Appendix H.]

45.20 [I]    What element has 11 protons and 12 neutrons? [Hint: What is
the value of A?]

45.21 [I]    How many neutrons are in the nucleus of 14C? Is this the
common form of carbon? How many neutrons does “ordinary”
carbon have? [Hint: What is the value of A?]

45.22 [I]    What element is specified by A = 18 and N = 10? [Hint: What is
the value of Z?]

45.23 [I]    When a parent nucleus  decays into a daughter nucleus (D)
via the emission of an alpha particle, we have an equation of the
form

Fill in the values of x and y.
45.24 [I]    Given that Po-210 decays via alpha emission, determine the

resulting daughter nucleus.

45.25 [I]    Determine the parent nuclide (P) that decayed into thorium-234
as follows:

P→234Th + α

[Hint: Use Appendix H and study Problem 45.23.]
45.26 [I]    When a parent nucleus  decays into a daughter nucleus (D)

via the emission of an electron, which is always accompanied by
an electron antineutrino, we have an equation of the form



Fill in the values of x and y.
45.27 [I]    The isotope potassium-40 is a β-emitter. Write out the parent-

daughter equation for the decay. [Hint: Study Problem 45.26.]

45.28 [I]    When a parent nucleus  captures an electron and transforms
into a daughter nucleus (D) along with the emission of a neutrino,
we have an equation of the form

Fill in the values of x and y.
45.29 [I]    Suppose we bombard nitrogen with alpha particles. What might

result if an alpha is absorbed and a proton subsequently is
emitted? [Hint: Write out an equation accounting for all the
particles.]

45.30 [I]    An important reaction results when lithium absorbs a proton and
splits into two helium nuclei (alpha particles). Write out the
appropriate equation describing the event.

45.31 [I]    A boron nucleus (10B) can absorb a neutron and subsequently
emit an alpha particle as it transmutes. Write out the appropriate
equation describing the event.

45.32 [I]    Plutonium-239 decays by alpha emission. Write out the equation
from the process.

45.33 [I]    Plutonium-239 decays as in the previous problem with a half-life
of 24 000 years. How much of an original quantity of plutonium
will still exist 72 000 years after it was produced in a reactor?

45.34 [I]    Astatine-215 has a half-life of 100 μs. Determine the decay
constant (λ).

45.35 [I]    If a sample of N0 atoms is radioactive with a half-life t½, show
that after a time t the number of atoms remaining will be



45.36 [I]    A free neutron is unstable (with a half-life of about 10.8
minutes), decaying into a proton, an electron, and an
antineutrino. If 1000 neutrons are created at once, how many will
remain after a time of 1.00 min? [Hint: Study the previous
problem.]

45.37 [I]    By how much does the mass of a heavy nucleus change when it
emits a 4.8-MeV gamma ray?

45.38 [II]  Find the binding energy of , which has an atomic mass of
106.905 u. Give your answer to three significant figures.

45.39 [II]  The binding energy per nucleon for elements near iron in the
periodic table is about 8.90 MeV per nucleon. What is the atomic
mass, including electrons, of ?

45.40 [II]  What mass of  has an activity of 1.0 Ci? The half-life of
cobalt-60 is 5.25 years.

45.41 [II]  An experiment is done to determine the half-life of a radioactive
substance that emits one beta particle for each decay process.
Measurements show that an average of 8.4 beta particles are
emitted each second by 2.5 mg of the substance. The atomic
mass of the substance is 230. Find the half-life of the substance.

45.42 [II]  The half-life of carbon-14 is 5.7 × 103 years. What fraction of a
sample of 14C will remain unchanged after a period of five half-
lives?

45.43 [II]  Cesium-124 has a half-life of 31 s. What fraction of a cesium-
124 sample will remain after 0.10 h?

45.44 [II]  A certain isotope has a half-life of 7.0 h. How many seconds
does it take for 10 percent of the sample to decay?

45.45 [II]  By natural radioactivity 238U emits an α-particle. The heavy
residual nucleus is called UX1. UX1 in turn emits a beta particle.
The resultant nucleus is called UX2. Determine the atomic
number and mass number for (a) UX1 and (b) UX2.



45.46 [I]    Upon decaying  emits a beta particle. The residual heavy
nucleus is also radioactive, and gives rise to 235U by the
radioactive process. What small particle is emitted
simultaneously with the formation of uranium-235?

45.47 [II]  Complete the following equations. (See Appendix H for a table
of the elements.)

45.48 [II]  Complete the notations for the following processes.

(a) 24Mg(d, α)?
(b) 26Mg(d, p)?
(c) 40Ar(p)?
(d) 12C(d, n)?
(e) 130Te(d, 2n)?
(f) 55Mn(n, γ)?
(g) 59Co(n, α)?

45.49 [II]  How much energy is released during reactions 
?

45.50 [II]  In the 14N(n, p)14C reaction, the proton is ejected with an energy
of 0.600 MeV. Very slow neutrons are used. Calculate the mass
of the 14C atom.

ANSWERS TO SUPPLEMENTARY PROBLEMS

45.18 [I]    92, 143, 92

45.19 [I]    Neon is a noble gas in the last column of the Periodic Table; all
neon possesses 10 protons; A = 23; Appendix H lists neon’s
“weight” as 20.18, so this is a heavy isotope having 13 neutrons.



45.20 [I]    Sodium has 11 protons and therefore .

45.21 [I]    For carbon, A = 12.0, so this is a heavy isotope; all carbon has 6
protons, and ordinary carbon has 6 neutrons; 14C has 8 neutrons.

45.22 [I]    From Eq. (45.2), Z = A − N = 8; that makes the element oxygen.

45.23 [I]    

45.24 [I]    

45.25 [I]    

45.26 [I]    

45.27 [I]    

45.28 [I]    

45.29 [I]    

45.30 [I]    

45.31 [I]    

45.32 [I]    

45.33 [I]    72000/24000 = 3 half-lives; after n half-lives, (½)n is the
remaining fraction of plutonium; hence (½)3 = 1/8 remains.

45.34 [I]    λ = 0.693/t1/2 = 0.693/t1/2 = 0.693/(100 μs) = 6930 s = 6.93 × 103

s

45.35 [I]    t/t1/2 = n is the number of half-lives; after each half-life, the
number of atoms remaining is halved; hence N(t) = N0(2–n) =
N0(½)n, and that agrees with the previous discussion as well as
the answer to Problem 45.33.

45.36 [I]    N(t) = N0(2–t/t
1/2) = 1000[1/(21.00/10.8)] = 1000[1/(20.092 59)] =

1000(1/1.066 2) = 1000(0.937 8) = 938



45.37 [I]    5.2 × 10−3 u = 8.6 × 10−30 kg

45.38 [II]  915 eV

45.39 [II]  55.9 u

45.40 [II]  8.8 × 10−7 kg

45.41 [II]  1.7 × 1010 years

45.42 [II]  0.031

45.43 [II]  0.000 32

45.44 [II]  3.8 × 103 s

45.45 [II]  (a) 90, 234; (b) 91, 234

45.46 [I]    alpha particle

45.47 [II]  

45.48 [I]    (a) 22Na; (b) 27Mg; (c) 43K; (d) 13N; (e) 130I; (f) 56Mn; (g) 56Mn

45.49 [II]  (a) 17.4 MeV; (b) 17.6 MeV

45.50 [II]  14.003 u



Applied Nuclear Physics

Nuclear Binding Energies differ from the atomic binding energies
discussed in Chapter 45 by the relatively small amount of energy that binds
the electrons to the nucleus. The binding energy per nucleon (the total
energy liberated on assembling the nucleus, divided by the number of
protons and neutrons) turns out to be largest for nuclei near Z = 30 (A = 60).
Hence, the nuclei at the two ends of the table of elements can liberate
energy if they are in some way transformed into middle-sized nuclei.

The binding energy (BE) of any nucleus is given by

Here Mp is the mass of a proton, Mn the mass of a neutron, and M the mass
of the bare nucleus we are investigating. The quantity (ZMp+NMn−M) is
called the mass defect (ΔM). It is common practice to measure and publish
tables of atomic masses rather than nuclear masses, and so we’ll rewrite the
previous equation as

Here MH is the mass of a hydrogen atom (1.007 825 u), Mn the mass of a
neutron, and MA the mass of the atom being studied. This overlooks the
roughly 3 keV/nucleon binding energy of the electrons since nuclear BE is
on the order of 8 MeV/nucleon.

Fission Reaction: A very large nucleus, such as the nucleus of the uranium
atom, liberates energy as it is split into two or three middle-sized nuclei.
Such a fission reaction can be induced by striking a large nucleus with a



low- or moderate-energy neutron. The fission reaction produces additional
neutrons, which, in turn, can cause further fission reactions and more
neutrons. If the number of neutrons remains constant or increases in time,
the process is a self-perpetuating chain reaction.

Fusion Reaction: In a fusion reaction, small nuclei, such as those of
hydrogen or helium, are joined together to form more massive nuclei,
thereby liberating energy.

This reaction is usually difficult to initiate and sustain because the nuclei
must be fused together even though they repel each other with the Coulomb
force. Only when the particles move toward each other with very high
energies do they come close enough for the strong force to bind them
together. The fusion reaction can occur in stars because of the high densities
and high thermal energies of the particles in these extremely hot objects.

Radiation Dose (D) is defined as the amount of energy imparted to a unit
mass of substance via the absorption of ionizing radiation. A material
receives a dose of 1 gray (Gy) when 1 J of radiation is absorbed in each
kilogram of the material:

so a gray is 1 J/kg. Although the gray is the SI unit for radiation dose,
another unit is widely used. It is the rad (rd), where 1 rad = 0.01 Gy.

Radiation Damage Potential: Each type (and energy) of radiation causes
its own characteristic degree of damage to living tissue. The damage also
varies among types of tissue. The potential damaging effects of a specific
type of radiation are expressed as the quality factor Q of that radiation.
Arbitrarily, the damage potential is determined relative to the damage
caused by 200-keV X-rays:

For example, if 10 Gy of a particular radiation will cause 7 times more
damage than 10 Gy of 200-keV X-rays, then the Q for that radiation is 7.
Quite often, the unit RBE (relative biological effectiveness) is used in place
of quality factor. The two are equivalent (see Table 46-1).



TABLE 46-1
Typical Values of Relative Biological Effectiveness (RBE)

Effective Radiation Dose (H), also called the biological equivalent dose, is
the radiation dose modified to express radiation damage to living tissue. The
SI unit of H is the sievert (Sv). It is defined as the product of the dose in
grays and the quality factor of the radiation:

For example, suppose a certain type of tissue is subjected to a dose of 5 Gy
of a radiation for which the quality factor is 3. Then the dose in sieverts is 3
× 5 = 15 Sv. Note that the units of Q are Sv/Gy.

While the sievert is the SI unit, another unit, the rem (radiation
equivalent, man), is very widely used. The two are related through 1 rem =
0.01 Sv.

High-Energy Accelerators: Charged particles can be accelerated to high
energies by causing them to follow a circular path repeatedly. Each time a
particle (of charge q) circles the path, it is caused to fall through a potential
difference V. After n trips around the path, its energy is q(nV).

Magnetic fields are used to supply the centripetal force required to keep
the particle moving in a circle. Equating magnetic force qυB to centripetal
force mυ2/r gives

In this expression, m is the mass of the particle that is traveling with speed υ
on a circle of radius r perpendicular to a magnetic field B.

The Momentum of A Particle is related to its KE. From Chapter 41, since
the total energy of a particle is the sum of its kinetic energy plus its rest



energy, E = KE + mc2, and with E2 = m2c4 + p2c2, it follows that

PROBLEM SOLVING GUIDE

Remember that 1 curie = 1 Ci = 3.7 × 1010 disintegrations per second = 3.7
× 1010 Bq: 1 gray = 1 Gy = 1 J/kg; 1 radiation absorbed dose = 1 rad = 0.01
Gy. The effect of a particular type of radiation on a biological system is
given by the RBE (or Q factor). The biological equivalent dose (in Sv) = the
absorbed dose (in Gy) times the RBE. Another common unit in use is the
radiation equivalent man, where 1 rem = 0.01 Sv. The biological equivalent
dose (in rem) = the absorbed dose (in rad) times the RBE. To find binding
energies you’ll need to know the mass of a hydrogen atom (1.007 825 u)
and the mass of a neutron (1.008 665 u). You might also need to know that 1
u = 1.6605390 × 10−27 kg = 931.494 095 MeV.

SOLVED PROBLEMS

46.1 [I]     The binding energy per nucleon for 238U is about 7.6 MeV, while
it is about 8.6 MeV for nuclei of half that mass. If a 238U nucleus
were to split into two equal-size nuclei, about how much energy
would be released in the process?

There are 238 nucleons involved. Each nucleon will release about
8.6 − 7.6 = 1.0 MeV of energy when the nucleus undergoes
fission. The total energy liberated is therefore about 238 MeV or
2.4 × 102 MeV.

46.2 [II]    What is the binding energy per nucleon for the  nucleus? The
atomic mass of 238U is 238.050 79 u; also mp = 1.007 276 u and
mn = 1.008 665 u.

The mass of 92 free protons plus 238 − 92 = 146 free neutrons is



(92)(1.007 276 u) + (146)(1.008 665 u) = 239.934 48 u

The mass of the 238U nucleus is

238.050 79 − 92me = 238.050 79 − (92)(0.000 549) = 238.000 28 u

The mass lost in assembling the nucleus is then

∆m = 239.934 48 − 238.000 28 = 1.934 2 u

Since 1.00 u corresponds to 931 MeV,

Binding energy = (1.934 2 u)(931 MeV/u) = 1800 MeV

46.3 [III]   When an atom of 235U undergoes fission in a reactor, about 200
MeV of energy is liberated. Suppose that a reactor using uranium-
235 has an output of 700 MW and is 20 percent efficient. (a) How
many uranium atoms does it consume in one day? (b) What mass
of uranium does it consume each day?

(a) Each fission yields

200 MeV = (200 × 106)(1.6 × 10−19) J

of energy. Only 20 percent of this is utilized efficiently, and so

Usable energy per fission = (200 × 106)(1.6 × 10−19)(0.20) = 6.4 × 10−12 J

Because the reactor’s usable output is 700 × 106 J/s, the
number of fissions required per second is

and Fissions/day = (86 400 s/d)(1.1 × 1020 s−1) = 9.5 × 1024 d−1

(b) There are 6.02 × 1026 atoms in 235 kg of uranium-235.



Therefore, the mass of uranium-235 consumed in one day is

46.4 [III]   Neutrons produced by fission reactions must be slowed by
collisions with moderator nuclei before they are effective in
causing further fissions. Suppose an 800-keV neutron loses 40
percent of its energy on each collision. How many collisions are
required to decrease its energy to 0.040 eV? (This is the average
thermal energy of a gas particle at 35 °C.)

After one collision, the neutron energy is down to (0.6)(800 keV).
After two, it is (0.6)(0.6)(800 keV); after three, it is (0.6)3(800
keV). Therefore, after n collisions, the neutron energy is
(0.6)n(800 keV). We want n large enough so that

(0.6)n(8 × 105 eV) = 0.040 eV

Taking the logarithms of both sides of this equation yields

n log10 0.6 + log10(8 × 105) = log10 0.04

(n)(−0.222) + 5.903 = −1.398

from which we find n to be 32.9. So 33 collisions are required.

46.5 [II]  To examine the structure of a nucleus, pointlike particles with de
Broglie wavelengths below about 10−16 m must be used. Through
how large a potential difference must an electron fall to have this
wavelength? Assume the electron is moving in a relativistic way.

The KE and momentum of the electron are related through

Because the de Broglie wavelength is λ = h/p, this equation
becomes



Using λ = 10−16 m, h = 6.63 × 10−34 J · s, and m = 9.1 × 10−31 kg,
we find that

KE = 1.99 × 10−9 J = 1.24 × 1010 eV

The electron must be accelerated through a potential difference of
about 1010 eV.

46.6 [III]   The following fusion reaction takes place in the Sun and furnishes
much of its energy:

where  is a positron electron. How much energy is released as
1.00 kg of hydrogen is consumed? The masses of 1H, 4He, and 
are, respectively, 1.007825, 4.002604, and 0.000 549 u, where
atomic electrons are included in the first two values.

Ignoring the electron binding energy, the mass of the reactants, 4
protons, is 4 times the atomic mass of hydrogen (1H), less the
mass of 4 electrons:

where me is the mass of the electron (or positron). The reaction
products have a combined mass

The mass loss is therefore

(Reactant mass) − (Product mass) = (4.031 3 u − 4me) − 4.002 6 u



Substituting me = 0.000 549 u gives the mass loss as 0.026 5 u.

But 1.00 kg of 1H contains 6.02 × 1026 atoms. For each four atoms
that undergo fusion, 0.026 5 u is lost. The mass lost when 1.00 kg
undergoes fusion is therefore

Then, from the Einstein relation,

ΔE = (Δm)c2 = (0.006 63 kg)(2.998 × 108 m/s)2 = 5.96 × 1014 J

46.7 [III]   Lithium hydride, LiH, has been proposed as a possible nuclear
fuel. The nuclei to be used and the reaction involved are as
follows:

the listed masses being those of the neutral atoms. Calculate the
expected power production, in megawatts, associated with the
consumption of 1.00 g of LiH per day. Assume 100 percent
efficiency.

Ignoring the electron binding energies, the change in mass for the
reaction must be computed first:

We find the loss in mass by subtracting the product mass from the
reactant mass. In the process, the electron masses drop out and the
mass loss is found to be 0.024 03 u.

The fractional loss in mass is 0.024 0/8.029 = 2.99 × 10−3.
Therefore, when 1.00 g reacts, the mass loss is



(2.99 × 10−3)(1.00 × 10−3 kg) = 2.99 × 10−6 kg

This corresponds to an energy of

ΔE = (Δm)c2 = (2.99 × 10−6 kg)(2.998 × 108 m/s)2 = 2.687 × 1011 J

46.8 [II]  Cosmic rays bombard the CO2 in the atmosphere and, by nuclear
reaction, cause the formation of the radioactive carbon isotope .
This isotope has a half-life of 5730 years. It mixes into the
atmosphere uniformly and is taken up in plants as they grow. After
a plant dies, the 14C decays over the ensuing years. How old is a
piece of wood that has a 14C content which is only 9 percent as
large as the average 14C content of new-grown wood?

During the years, the 14C has decayed to 0.090 its original value.
Hence (see Problem 45.6),

After taking the natural logarithms of both sides,

The piece of wood is about 20 000 years old.

46.9 [III]   Iodine-131 has a half-life of about 8.0 days. When consumed in
food, it localizes in the thyroid. Suppose 7.0 percent of the 131I
localizes in the thyroid and that 20 percent of its disintegrations
are detected by counting the emitted gamma rays. How much 131I
must be ingested to yield a thyroid count rate of 50 counts per
second?



Because only 20 percent of the disintegrations are counted, there
must be a total of 50/20% or 50/0.20 = 250 disintegrations per
second, which is what ΔN/Δt is. From Chapter 45,

from which N = 2.49 × 108.

However, this is only 7.0 percent of the ingested 131I. Hence the
number of ingested atoms is N/0.070 = 3.56 × 109. And, since 1.00
kmol of 131I is approximately 131 kg, this number of atoms
represents

which is the mass of 131I that must be ingested.

46.10 [II] A beam of gamma rays has a cross-sectional area of 2.0 cm2 and
carries 7.0 × 108 photons through the cross section each second.
Each photon has an energy of 1.25 MeV. The beam passes through
a 0.75 cm thickness of flesh (ρ = 0.95 g/cm3) and loses 5.0 percent
of its intensity in the process. What is the average dose (in Gy and
in rd) applied to the flesh each second?

The dose in this case is the energy absorbed per kilogram of flesh.
Since 5.0% of the intensity is absorbed,

Number of photons absorbed/s = (7.0 × 108 s−1)(0.050) = 3.5 × 107 s−1

and each such photon carries an energy of 1.25 MeV. Hence,

Energy absorbed/s = (3.5 × 107 s−1)(1.25 MeV) = 4.4 × 107 MeV/s

We need the mass of flesh in which this energy was absorbed. The
beam was delivered to a region of area 2.0 cm2 and thickness 0.75
cm. Thus,



Mass = ρV = (0.95 g/cm3)[(2.0 cm2)(0.75 cm)] = 1.43 g

Keeping in mind that 1rd = 0.01 Gy,

46.11 [II] A beam of alpha particles passes through flesh and deposits 0.20 J
of energy in each kilogram of flesh. The Q for these particles is 12
Sv/Gy. Find the dose in Gy and rad, as well as the effective dose
in Sv and rem.

Recall that H = QD where

Hence, H = Effective dose = Q(dose) = (12 Sv/Gy)(0.20 Gy) = 2.4 Sv = 2.4
× 102 rem

46.12 [III] A tumor on a person’s leg has a mass of 3.0 g. What is the
minimum activity a radiation source can have if it is to furnish a
dose of 10 Gy to the tumor in 14 min? Assume each disintegration
within the source, on the average, provides an energy 0.70 MeV to
the tumor.

A dose of 10 Gy corresponds to 10 J of radiation energy being
deposited per kilogram. Since the tumor has a mass of 0.003 0 kg,
the energy required for a 10 Gy dose is (0.003 0 kg)(10 J/kg) =
0.030 J.

Each disintegration provides 0.70 MeV, which in joules is

(0.70 × 106 eV)(1.60 × 10−19 J/eV) = 1.12 × 10−13 J

A dose of 10 Gy requires that an energy of 0.030 J be delivered.
That total energy divided by the energy per disintegration, yields
the number of disintegrations:



They are to occur in 14 min (or 840 s), and so the disintegration
rate is

Hence, the source activity must be at least 3.2 × 108 Bq. Since 1
Ci = 3.70 × 1010 Bq, the source activity must be at least 8.6 mCi.

46.13 [II] A beam of 5.0 MeV alpha particles (q = 2e) has a cross-sectional
area of 1.50 cm2. It is incident on flesh (ρ = 950 kg/m3) and
penetrates to a depth of 0.70 mm. (a) What dose (in Gy) does the
beam provide to the flesh in a time of 3.0 s? (b) What effective
dose does it provide? Assume the beam to carry a current of 2.50
× 10−9 A and to have Q = 14.

Using the current, find the number of particles deposited in the
flesh in 3.0 s, keeping in mind that for each particle q = 2e:

Each 5.0-MeV alpha particle deposits an energy of (5.0 × 106 eV)
(1.60 × 10−19 J/eV) = 8.0 × 10−13 J. In 3.0 s a total energy of 2.34
× 1010 particles) (8.0 × 10−13 J/particle) is deposited. And it is
delivered to a volume of area 1.50 cm2 and thickness 0.70 mm.
Therefore,

Effective dose = Q(dose) = (14)(188) = 2.6 × 103 Sv

SUPPLEMENTARY PROBLEMS



46.14 [I]  Calculate the binding energy of carbon-12 (12C) in MeV to four
figures. The mass of the carbon atom is 12.000 000 u. [Hint: Z = 6;
study Eq. (46.2). Remember that atomic mass includes the mass of
the orbiting electrons.]

46.15 [I]  The most common isotope of iron is iron-56 (56Fe) at 91.8%. Its
atomic mass is 55.934 942 u. Calculate its nuclear mass defect.
[Hint: Z = 26; study Eq. (46.2). Remember that atomic mass
includes the mass of the orbiting electrons.]

46.16 [I]  Calculate the nuclear binding energy of boron-11 (11B) in MeV to
four figures. The mass of the boron atom is 11.009 305 u. [Hint: Z
= 5; study Eq. (46.2). Remember that atomic mass includes the
mass of the orbiting electrons.]

46.17 [I]  The heavy isotope of hydrogen, deuterium (2H), has an atomic
mass of 2.014 102 u. Its nucleus consists of 1 proton and 1
neutron. Calculate its nuclear binding energy in MeV to four
figures. [Hint: Remember that atomic mass includes the mass of
the orbiting electrons.]

46.18 [I]  Calculate the binding energy per nucleon of the most common
(99.8%) isotope of oxygen (16O) in MeV to four figures. The mass
of the oxygen-16 atom is 15.994 915 u. [Hint: Z = 8; study Eq.
(46.2). Remember that atomic mass includes the mass of the
orbiting electrons.]

46.19 [I]  A person in a hospital is injected with 10.0 millicuries of
technetium-99. Determine the activity, that is, the number of
disintegrations per second. [Hint: Remember that R = ΔN/Δt.]

46.20 [I]  A 70.0-kg hospital patient receives a short-lived radioactive isotope
that decays via the emission of gamma-ray photons. If the isotope
leads to the absorption of 0.25 J of radiant energy, what is the
absorbed dose? [Hint: Take the dose to be to the full body.]

46.21 [I]  A man in a hospital has his broken 5.5-kg leg X-rayed. He receives



an equivalent dose of 60 mrem. How much energy did the leg
absorb? [Hint: Note that mrem is millirem. For X-rays take RBE =
1.]

46.22 [I]  An 80.0-kg man receives a short-lived radioactive isotope that
decays via the emission of gamma-ray photons with an RBE of
0.90. If the isotope leads to the absorption of 0.30 J of radiant
energy, what is the biological equivalent dose he receives? [Hint:
Take the dose to be to the full body.]

46.23 [II] Consider the following fission reaction:

where the neutral atomic masses are given. How much energy is
released when (a) 1 atom undergoes this type of fission, and (b)
1.0 kg of atoms undergoes fission?

46.24 [II] It is proposed to use the nuclear fusion reaction

to produce industrial power (neutral atomic masses are given). If
the output is to be 150 MW and the energy of the reaction will be
used with 30 percent efficiency, how many grams of deuterium
fuel will be needed per day?

46.25 [II] One of the most promising fusion reactions for power generation
involves deuterium (2H) and tritium (3H):

where the atomic masses including electrons are as given. How
much energy is produced when 2.0 kg of 2H fuses with 3.0 kg of
3H to form 4He?

46.26 [I]  What is the average KE of a neutron at the center of the Sun, where



the temperature is about 107 K? Give your answer to two
significant figures.

46.27 [II] Find the energy released when two deuterons ( , atomic mass =
2.014 10 u) fuse to form  (atomic mass = 3.016 03 u) with the
release of a neutron. Give your answer to three significant figures.

46.28 [II] The tar in an ancient tar pit has a 14C activity that is only about
4.00 percent of that found for new wood of the same density.
What is the approximate age of the tar?

46.29 [II] Rubidium-87 has a half-life of 4.9 × 1010 years and decays to
strontium-87, which is stable. In an ancient rock, the ratio of 87Sr
to 87Rb is 0.005 0. If we assume all the strontium came from
rubidium decay, about how old is the rock? Repeat if the ratio is
0.210.

46.30 [II] The luminous dial of an old watch gives off 130 fast electrons each
minute. Assume that each electron has an energy of 0.50 MeV and
deposits that energy in a volume of skin that is 2.0 cm2 in area and
0.20 cm thick. Find the dose (in both Gy and rad) that the volume
experiences in 1.0 day. Take the density of skin to be 900 kg/m3.

46.31 [II] An alpha-particle beam enters a charge collector and is measured
to carry 2.0 × 10−14 C of charge into the collector each second.
The beam has a cross-sectional area of 150 mm2, and it penetrates
human skin to a depth of 0.14 mm. Each particle has an initial
energy of 4.0 MeV. The Q for such particles is about 15. What
effective dose, in Sv and in rem, does a person’s skin receive
when exposed to this beam for 20 s? Take ρ = 900 kg/m3 for skin.

ANSWERS TO SUPPLEMENTARY PROBLEMS

46.14 [I]    BE ≈ (ZMH + NMn − MC)c2 = [6(1.007825 u) + 6(1.008665 u) −



12.000 000 u]c2 = [0.098 94 u]c2 since 1 u = 1.660 538 9 × 10−27

kg; BE ≈ (0.098 94 u)(1.660 538 9 × 10−27 kg/u)c2 = (1.642 937
× 10−28 kg)c2 = 1.476 598 × 10−11 J = 92.16 MeV

46.15 [I]    ΔM = (ZMH + NMn − MFe) = 26(1.007 825 u) + 30(1.008 665 u)
− 55.934 942 u = 26.203 45 u + 30.259 95 u − 55.934 942 u =
0.528 458 u since 1 u = 1.660 539 0 × 10−27 kg; ΔM = 8.775 251
× 10−28 kg

46.16 [I]    BE ≈ (ZMH + NMn − MB)c2 = [5(1.007 825 u) + 6(1.008 665 u)
− 11.009 305 u]c2 = [0.081 81 u]c2 since 1 u = 931.494 095
MeV; BE ≈ 76.21 MeV

46.17 [I]    BE ≈ (ZMH + NMn − MD)c2 = [1(1.007 825 u) + 1(1.008 665 u)
− 2.014 102 u]c2 = [0.002 388 u]c2 since 1 u = 931.494 095
MeV; BE ≈ 2.224 MeV

46.18 [I]    BE ≈ (ZMH + NMn − MD)c2 = [8(1.007 825 u) + 8(1.008 665 u)
− 15.994 915 u]c2 = [0.137 005 u]c2 since 1 u = 931.494 095
MeV; BE ≈ 127.619 MeV; hence BE/nucleon = (127.619
MeV)/16 = 7.976 MeV

46.19 [I]    R = 10.0 mCi × 3.7 × 1010 Bq/Ci = 3.7 × 108 Bq

46.20 [I]    The absorbed dose is J/kg; hence (0.25 J)/(70.0 kg) = 3.57 mGy.

46.21 [I]    The biological equivalent dose (in rem) = the absorbed dose (in
rad) times the RBE; 60 mrem = 60 mrad × 1; 60 mrad = 0.060
rad; but 1 rad = 0.01 Gy; 0.060 rad × 0.01 Gy/rad = 0.60 mGy =
0.60 mJ/kg; 0.60 mJ/kg × 5.5 kg = 3.3 mJ

46.22 [I]    The biological equivalent dose (in Sv) = the absorbed dose (in
Gy) times the RBE; the absorbed dose is J/kg; hence (0.30
J)/(80.0 kg) = 3.75 mGy; the biological equivalent dose (in Sv) =
(3.75 mGy)(0.9) = 3.4 mSv.



46.23 [II]   (a) 182 MeV; (b) 7.5 × 1013 J

46.24 [II]   75 g/day

46.25 [II]   1.7 × 1015 J

46.26 [I]    1.3 keV

46.27 [II]   3.27 MeV

46.28 [II]   26.6 × 103 years

46.29 [II]   3.5 × 108 years, 1.35 × 1010 years

46.30 [II]   42 µGy, 4.2 mrad

46.31 [II]   0.63 Sv, 63 rem



Significant Figures

Introduction: The numerical value of every measurement is an
approximation. Consider that the length of an object is recorded as 15.7 cm.
By convention, this means that the length was measured to the nearest tenth
of a centimeter and that its exact value lies between 15.65 and 15.75 cm. If
this measurement were exact to the nearest hundredth of a centimeter, it
would have been recorded as 15.70 cm. The value 15.7 cm represents three
significant figures (1, 5, 7), while the value 15.70 represents four significant
figures (1, 5, 7, 0). A significant figure is one that is known to be reasonably
reliable.

Similarly, a recorded mass of 3.406 2 kg means that the mass was
determined to the nearest tenth of a gram and represents five significant
figures (3, 4, 0, 6, 2), the last figure (2) being reasonably correct and
guaranteeing the certainty of the preceding four figures.

Zeros may be significant or they may merely serve to locate the decimal
point. We will take zeros to the left of the normal position of the decimal
point (in numbers like 100, 2500, 40, etc.) to be significant. For instance, the
statement that a body weighs 9800 N will be understood to mean that we
know the weight to the nearest newton: there are four significant figures here.
Alternatively, if it was weighed to the nearest hundred newtons, the weight
contains only two significant figures (9, 8) and may be written exponentially
as 9.8 × 103 N. If it was weighed to the nearest ten newtons, it should be
written as 9.80 × 103 N, displaying three significant figures. If the object was
weighed to the nearest newton, the weight can also be written as 9.800 × 103

N (four significant figures). Of course, if a zero stands between two
significant figures, it is itself significant. Zeros to the immediate right of the



decimal are significant only when there is a nonzero figure to the left of the
decimal. Thus, the numbers 0.001, 0.001 0, 0.001 00, and 1.001 have one,
two, three, and four significant figures, respectively.

Rounding Off: A number is rounded off to the desired number of significant
figures by dropping one or more digits to the right. When the first digit
dropped is less than 5, the last digit retained should remain unchanged; when
it is 5 or more, 1 is added to the last digit retained.

Addition and Subtraction: The result of adding or subtracting should be
rounded off so as to retain digits only as far as the first column containing
estimated figures. (Remember that the last significant figure is estimated.) In
other words, the answer should have the same number of figures to the right
of the decimal point as does the least precisely known number being added or
subtracted.

Examples: Add the following quantities expressed in meters.

Multiplication and Division: Here the result should be rounded off to
contain only as many significant figures as are contained in the least exact
factor.

There are some exceptional cases, however. Consider the division 9.84 ÷
9.3 = 1.06, to three places. By the rule given above, the answer should be 1.1
(two significant figures). However, a difference of 1 in the last place of 9.3
(9.3 ± 0.1) results in an error of about 1 percent, while a difference of 1 in the
last place of 1.1 (1.1 ± 0.1) yields an error of roughly 10 percent. Thus, the
answer 1.1 is of much lower percentage accuracy than 9.3. Hence, in this case
the answer should be 1.06, since a difference of 1 in the last place of the least
exact factor used in the calculation (9.3) yields a percentage of error about the
same (about 1 percent) as a difference of 1 in the last place of 1.06 (1.06 ±
0.01). Similarly, 0.92 × 1.13 = 1.04. We shall not worry about such
exceptions.

Trigonometric Functions: As a rule, the values of sines, cosines, tangents,
and so forth should have the same number of significant figures as their



arguments. For example, sin 35° = 0.57, whereas sin 35.0° = 0.574.

EXERCISES

1 [I]    How many significant figures are given in the following quantities?
(a) 454 g
(b) 2.2 N
(c) 2.205 N
(d) 0.393 7 s
(e) 0.035 3 m
(f) 1.008 0 hr
(g) 14.0 A
(h) 9.3 × 107 km
(i) 1.118 × 10-3 V
(j) 1030 kg/m3

(k) 125 000 N

2 [I]    Add:

3 [I]    Subtract:

4 [I]    Multiply:
(a) 2.21 × 0.3
(b) 72.4 × 0.084
(c) 2.02 × 4.113
(d) 107.88 × 0.610
(e) 12.4 × 84.0
(f) 72.4 × 8.6



5[I]    Divide:

ANSWERS TO EXERCISES

1 [I]    (a) 3
(b) 2
(c) 4
(d) 4
(e) 3
(f) 5
(g) 3
(h) 2
(i) 4
(j) 4
(k) 6

2 [I]    (a) 711 h
(b) 30.6 cm
(c) 0.326 s
(d) 4.8 N

3 [I]    (a) 7.1 J
(b) 545.6 m
(c) 34 kg

4 [I]    (a) 0.7
(b) 6.1
(c) 8.31
(d) 65.8
(e) 1.04 × 103

(f) 6.2 × 102



5 [I]    (a) 38.4
(b) 20.0
(c) 8
(d) 1.05



Trigonometry Needed for College Physics

Functions of an Acute Angle: The trigonometric functions most often used
are the sine, cosine, and tangent. It is convenient to put the definitions of the
functions of an acute angle in terms of the sides of a right triangle.

In any right triangle: The sine of either acute angle is equal to the length of
the side opposite that angle divided by the length of the hypotenuse. The
cosine of either acute angle is equal to the length of the side adjacent to that
angle divided by the length of the hypotenuse. The tangent of either acute
angle is equal to the length of the side opposite that angle divided by the
length of the side adjacent to that angle.

If θ and φ are the acute angles of any right triangle and A, B, and C are the
sides, as shown in the diagram, then note that sinθ = cosϕ; thus, the sine of
any angle equals the cosine of its complementary angle. For example,

sin 30°= cos(90°-30°)= cos60°        cos50°=sin (90°-50°)=sin 40°

As an angle increases from 0° to 90°, its sine increases from 0 to 1, its
tangent increases from 0 to infinity, and its cosine decreases from 1 to 0.

Law of Sines and of Cosines: These two laws give the relations between the
sides and angles of any plane triangle. In any plane triangle with angles α, β,
and γ and sides opposite A, B, and C, respectively, the following relations
apply:
Law of Sines



or

Law of Cosines

If the angle θ is between 90° and 180°, as in the case of angle C in the above
diagram, then

Thus

SOLVED PROBLEMS

1 [I]    In right triangle ABC, given A = 8, B = 6, γ = 90°. Find the values of
the sine, cosine, and tangent of angle α and of angle β.



2 [I]    Given a right triangle with one acute angle 40.0° and hypotenuse 400,
find the other sides and angles.

Using a calculator, we find that sin 40.0° = 0.642 8 and cos 40.0° =
0.766 0. Then

3 [II]  Given triangle ABC with α = 64.0°, β = 71.0°, B = 40.0°, find A and C.

γ = 180.0° – (α + β) = 180.0° – (64.0° + 71.0°) = 45.0°

By the law of sines,

so



and

4 [I]    (a) If cos α = 0.438, find α to the nearest degree. (b) If sin β = 0.800 0,
find β to the nearest tenth of a degree. (c) If cos γ = 0.712 0, find γ to
the nearest tenth of a degree.
(a) On your calculator use the inverse and cosine keys to get α = 64°;

or if you have a cos-1 key, use it.
(b) Enter 0.800 0 on your calculator and use the inverse and sine keys

to get β = 53.1°.
(c) Use your calculator as in (a) to get 44.6°.

5 [II]  Given triangle ABC with α = 130.8°, A = 525, C = 421, find B, β, and
γ.

sin 130.8° = sin (180° – 130.8°) = sin 49.2° = 0.757

Most hand calculators give sin 130.8° directly.

from which γ = 37.4°

For β:     β = 180° - (γ + α) = 180° - (37.4° + 130.8°) = 11.8°



6 [II]  Given triangle ABC with A = 14, B = 8.0, γ = 130°, find C, α, and β.
cos 130° = – cos (180° – 130°) = – cos 50° = – 0.64

For C: By the law of cosines,

For α: By the law of sines,

and α = 32°

For β:     β = 180° – (α + γ) = 180° – (32° + 130°) = 18°

7 [II]  Determine the unspecified sides and angles of the following right
triangles ABC, with γ = 90°.
(a) α = 23.3°, C = 346
(b) β = 49.2°, B = 222



(c) α = 66.6°, A = 113
(d) A = 25.4, B = 38.2

(e) B = 673, C = 888

(a) β = 66.7°, A = 137, B = 318
(b) α = 40.8°, A = 192, C = 293
(c) β = 23.4°, B = 48.9, C = 123
(d) α = 33.6°, β = 56.4°, C = 45.9
(e) α = 40.7°, β = 49.3°, A = 579

8 [II]  Determine the unspecified sides and angles of the following oblique
triangles ABC.
(a) A = 125, α = 54.6°, β = 65.2°
(b) B = 321, α = 75.3°, γ = 38.5°
(c) B = 215, C = 150, β = 42.7°
(d) A = 512, B = 426, α = 48.8°
(e) B = 50.4, C = 33.3, β = 118.5°
(f) B = 120, C = 270, α = 118.7°
(g) A = 24.5, B = 18.6, C = 26.4

(h) A = 6.34, B = 7.30, C = 9.98

(a) B = 139, C = 133, γ = 60.2°
(b) A = 339, C = 218, β = 66.2°
(c) A = 300, α = 109.1°, γ = 28.2°
(d) C = 680, β = 38.8°, γ = 92.4°
(e) A = 25.1, α = 26.0°, γ = 35.5°
(f) A = 344, β = 17.8°, γ = 43.5°
(g) α = 63.2°, β = 42.7°, γ = 74.1°
(h) α = 39.3°, β = 46.9°, γ = 93.8°



Exponents

Powers of 10: The following is a partial list of powers of 10. (See also
Appendix E.)

In the expression 105, the base is 10 and the exponent is 5.

Multiplication and Division: In multiplication, exponents of like bases are
added:

In division, exponents of like bases are subtracted:

Scientific Notation: Any number may be expressed as an integral power of
10 or as the product of two numbers, one of which is an integral power of 10.



For example,

Other Operations: A nonzero expression with an exponent of zero is equal
to 1. Thus,

a0 = 1      100 = 1      (3 × 10)0 = 1      8.2 × 100 = 8.2

A power may be transferred from the numerator to the denominator of a
fraction, or vice versa, by changing the sign of the exponent. For example,

The meaning of the fractional exponent is illustrated by the following:

To take a power to a power, multiply exponents:

To extract the square root, divide the exponent by 2. If the exponent is an odd
number, it should first be increased or decreased by 1 and the coefficient
adjusted accordingly. To extract the cube root, divide the exponent by 3. The
coefficients are treated independently. Thus,

Most hand calculators give square roots directly. Cube roots and other roots
are easily found using the yx key.

EXERCISES

1 [I]    Express the following in powers of 10.



(a) 326
(b) 32 608
(c) 1006
(d) 36 000 008
(e) 0.831
(f) 0.03
(g) 0.000 002
(h) 0.000 706
(i) 
(j) 

2 [I]    Evaluate the following and express the results in powers of 10.

ANSWERS TO EXERCISES

1 [I]    (a) 3.26 × 102

(b) 3.260 8 × 104

(c) 1.006 × 103

(d) 3.600 000 8 × 107

(e) 8.31 × 10-1

(f) 3 × 10-2

(g) 2 × 10-6

(h) 7.06 × 10-4

(i) 9.0 × 10-3

(j) 3.0 × 10-2

2 [I]    (a) 3.90 × 105



(b) 7.70 × 106

(c) 2.0 × 10-3

(d) 6.9 × 105

(e) 1.728 × 105

(f) 1 × 103

(g) 5 × 10-5

(h) 6.0 × 10-1

(i) 1.5 × 101

(j) 4 × 107

(k) 3 × 105

(l) 1 × 106



Logarithms

The Logarithm to Base 10 of a number is the exponent or power to which
10 must be raised to yield that number. Since 1000 is 103, the logarithm to
base 10 of 1000 (written log 1000) is 3. Similarly, log 10 000 = 4, log 10 = 1,
log 0.1 = –1, and log 0.001 = –3.

Most hand calculators have a log key. When a number is entered into the
calculator, its logarithm to base 10 can be found by pressing the log key. In
this way we find that log 50 = 1.698 97 and log 0.035 = –1.455 93. Also, log
1 = 0, which reflects the fact that 100 = 1.

Natural Logarithms are taken to the base e = 2.718, rather than 10. They
can be found on most hand calculators by pressing the ln key. Since e0 = 1,
we have ln 1 = 0.

Examples:

Exercises: Find the logarithms to base 10 of the following numbers.

(a) 454
(b) 5280
(c) 96 500
(d) 30.48
(e) 1.057
(f) 0.621



(g) 0.946 3
(h) 0.035 3
(i) 0.002 2
(j) 0.000 264 5

(a) 2.657 1
(b) 3.722 6
(c) 4.984 5
(d) 1.484 0
(e) 0.024 1
(f) –0.206 9
(g) –0.023 97
(h) –1.452 2
(i) –2.657 6
(j) –3.577 6

Antilogarithms: Suppose we have an equation such as 3.5 = 100.544; then we
know that 0.544 is the log to base 10 of 3.5. Or, inversely, we can say that 3.5
is the antilogarithm (or inverse logarithm) of 0.544. Finding the
antilogarithm of a number is simple with most hand calculators: Enter the
number; then press first the inverse key and then the log key. Or, if the base
is e rather than 10, press the inverse and ln keys.

Exercises: Find the numbers corresponding to the following logarithms.

(a) 3.156 8
(b) 1.693 4
(c) 5.693 4
(d) 2.500 0
(e) 2.043 6
(f) 0.914 2
(g) 0.000 8
(h) –0.249 3
(i) –1.996 5
(j) –2.799 4



(a) 1435
(b) 49.37
(c) 4.937 × 105

(d) 316.2
(e) 110.6
(f) 8.208
(g) 1.002
(h) 0.563 2
(i) 0.010 08
(j) 0.001 587

Basic Properties of Logarithms: Since logarithms are exponents, all
properties of exponents are also properties of logarithms.
(1) The logarithm of the product of two numbers is the sum of their

logarithms. Thus,

log ab = log a + log b      log(5280 × 48) = log 5280 + log 48

(2) The logarithm of the quotient of two numbers is the logarithm of the
numerator minus the logarithm of the denominator. For example,

(3) The logarithm of the nth power of a number is n times the logarithm of
the number. Thus,

log an = n log a      log(4.28)3 = 3 log 4.28
(4) The logarithm of the nth root of a number is 1/n times the logarithm of the

number. Thus,

SOLVED PROBLEM

1 [I]    Use a hand calculator to evaluate (a) (5.2)0.4, (b) (6.138)3, (c) , (d)



(7.25 × 10-11)0.25.
(a) Enter 5.2; press yx key; enter 0.4; press = key. The displayed

answer is 1.934.
(b) Enter 6.138; press yx key; enter 3; press = key. The displayed

answer is 231.2.
(c) Enter 5; press yx key; enter 0.333 3; press = key. The displayed

answer is 1.710.
(d) Enter 7.25 × 10-11; press yx key; enter 0.25; press = key. The

displayed answer is 2.918 × 10-3.

EXERCISES

2 [I]    Evaluate each of the following.
(1) 28.32 × 0.08254
(2) 573 × 6.96 × 0.00481
(3) 

(4) 

(5) 

(6) 

(7) 

(8) (8.642)2

(9) (0.086 42)2

(10) (11.72)3

(11) (0.0523)3

(12) 
(13) 
(14) 



(15) 
(16) 
(17) 
(18) (8.73 × 10–2)(7.49 × 106)
(19) (3.8 × 10–5)(1.9 × 10–5)

(20) 

(21) 
(22) 
(23) 
(24) 

(25) 

(26) 2.04 log 97.2
(27) 37 log 0.0298
(28) 6.30 log(2.95 × 103)
(29) 8.09 log(5.68 × 10–16)
(30) (2.00)0.714

ANSWERS TO EXERCISES

2 [I]    (1) 2.337
(2) 19.2
(3) 1.247
(4) 0.290 2
(5) 0.004 18
(6) 0.189
(7) 44.3



(8) 74.67
(9) 0.007 467
(10) 1611
(11) 0.000 143
(12) 97.27
(13) 30.76
(14) 0.081 3
(15) 1.21
(16) 0.653
(17) 177
(18) 6.54 × 105

(19) 2.7 × 10–14

(20) 5.3 × 10–23

(21) 1.59 × 103

(22) 9.72 × 102

(23) 8.5 × 10–7

(24) 4.2 × 10–5

(25) 0.73
(26) 4.05
(27) –56
(28) 21.9
(29) –123
(30) 1.64





Factors for Conversions to SI Units





Physical Constants



Table of the Elements

The masses listed are based on . A value in parentheses is the mass
number of the most stable (long-lived) of the known isotopes.





Please note that index links point to page beginnings from the print edition.
Locations are approximate in e-readers, and you may need to page down one
or more times after clicking a link to get to the indexed material.

Absolute humidity, 237
Absolute potential, 313
Absolute temperature, 208, 227

and molecular energy, 227
Absolute value, 4
Absolute zero, 208
Absorption of light, 511
ac circuits, 423–432
ac generator, 423
Acceleration, 16

angular, 125
centripetal, 126
due to gravity, 17
and force, 32
radial, 125
in SHM, 158
tangential, 125
vector, 16

Accelerator, high energy, 540
Action–Reaction Law, 33
Activity, nuclear, 526
Actual mechanical advantage, 100
Addition of vectors, 3
Adiabatic process, 254
Alpha particle, 524
Alternating voltage, 423



Ammeter, 332
Ammeter–voltmeter method, 332
Ampere (unit), 332
Amplitude of vibration, 157, 273
Analogies, linear and rotational motion, 125, 141
Angular acceleration, 125, 139

and torque, 139
Angular displacement, 124
Angular frequency, 125, 159
Angular impulse, 140
Angular kinetic energy, 139
Angular magnification, 466
Angular momentum, 140

conservation of, 140
Angular motion, 124–138

equations for, 125
Angular speed, 124
Angular velocity, 125
Antinode, 274
Apparent depth in refraction, 450
Archimedes’ principle, 184
Armature, 406, 407
Astronomical telescope, 467, 472, 474
Atmospheric pressure, 183
Atomic mass, 524
Atomic mass unit, 524
Atomic number, 509
Atomic photoelectric effect, 513
Atomic table, 564–566
Atwood’s machine, 46, 90
Average acceleration, 16, 19
Average speed, 1, 20
Avogadro’s number, 227
Axis for torque, 71

Back emf, 407
Ballistic pendulum, 112–113



Ballistic projectile, 18
Balmer series, 510
Banking of curves, 133
Basis vectors, 6
Battery, 332

ampere-hour rating, 345
Beats, 286
Becquerel (unit), 526
Bernoulli’s Equation, 198
Beta particle, 524
Binding energy, 525, 539
Biot-Savart Law, 387
Blackbody, 247
Bohr model, 302, 337, 509
Boltzmann’s constant, 227
Boyle’s Law, 217
Bragg equation, 478
British thermal unit, 235
Bulk modulus, 174
Buoyant force, 184

Calorie (unit), 235
nutritionist’s, 235

Calorimetry, 237
Capacitance, 314, 315
Capacitive reactance, 424
Capacitors, 314, 368

in ac circuit, 423–432
charging of, 414
energy of, 315
in parallel, 314, 315
in series, 314, 315

Carbon dating, 544
Carnot cycle, 255
Celsius temperature, 208
Center of gravity, 71
Center of mass, 109



Centigrade temperature (see Celsius temperature)
Centipoise (unit), 197
Centripetal acceleration, 126
Centripetal force, 126
Chain hoist, 105
Chain reaction, 539
Charge:

conservation of, 300
of electron, 299

Charge, motion in  field, 373–375
Charge quantum, 299
Charles’ Law, 217
Circuit rule, 365
Coefficient of friction, 33
Coefficient of restitution, 109
Coherent waves, 476
Collisions, 109, 110
Component method, 6
Components of a vector, 5
Compressibility, 175
Compressional waves, 275
Compton effect, 500
Concave mirror, 433, 434

ray diagram for, 434
Concurrent forces, 59
Conduction of heat, 246
Conductivity, thermal, 246
Conical pendulum, 127
Conservation:

of angular momentum, 140
of charge, 300
of energy, 86
of linear momentum, 108

Constants, table of, 563
Continuity equation, 197
Convection of heat, 247
Conversion factors, 562



Convex mirror, 434
ray diagram for, 434

Coplanar forces, 35, 70
Coulomb (unit), 298
Coulomb force, 298
Coulomb’s Law, 298–312
Counter emf, 407
Crest of wave, 273
Critical angle, 446
Curie (unit), 531
Current, electric, 332–342
Current loop, torque on, 375, 376

Dalton’s Law of partial pressures, 217
Daughter nucleus, 534
de Broglie wavelength, 500
de Broglie waves, resonance, 500, 550
Decay constant, 526
Decay law, radioactivity, 525, 526
Decibel (unit), 286
Density, 172
Deuteron, 524
Dew point, 237
Diamagnetism, 394
Dielectric constant, 299
Differential pulley, 105
Diffraction, 476–487

and limit of resolution, 477
by single slit, 477
of X-rays, 478

Diffraction grating, 477, 478
Dimensional analysis, 18
Diopter (unit), 458
Direct current circuits, 332–342
Discharge rate, fluids, 197
Disorder, 267
Displacement, 2



Displacement, angular, 124
Displacement vector, 2
Distance, 1
Domain, magnetic, 387
Doppler effect, 286
Dose, of radiation, 539
Double-slit interference, 476, 477

Earth:
magnetic field of, 375

Effective radiation dose, 540
Effective values of circuits, 423, 424
Efficiency, 100, 255
Elastic collision, 109
Elastic constant, 158
Elastic limit, 173
Elasticity, 172
Electric current, 333
Electric field, 300

of parallel plates, 314
of point charge, 300
related to potential, 314

Electric field strength, 300
Electric generator, 406–412
Electric motor, 407
Electric potential, 313
Electric potential energy, 313
Electric power, 343–348
Electromotive force (see emf)
Electron, 299, 509
Electron orbits, 509
Electron shell, 517
Electron volt (unit), 314
Elements, table of, 564–566
emf (electromotive force), 333, 394

induced, 394–405
motional, 395



Emission of light, 510
Emissivity, 248
Energy, 85

in a capacitor, 315
conservation of, 86
electric potential, 313
gravitational potential, 86
heat, 253
in an inductor, 413

internal, 253
kinetic, 85, 488, 489
levels, 509

quantization of, 510
relativistic, 488, 489
rotational kinetic, 139
in SHM, 158
in a spring, 158
of vibration, 158

Energy-level diagram, 510
helium ion, 512
hydrogen, 509, 512

Entropy, 267–272
Equation of continuity, 197
Equations:

uniform accelerated motion, 16
Equilibrant, 52
Equilibrium, 59

under concurrent forces, 59–69
under coplanar forces, 70–84
first condition for, 59
of rigid body, 70–84
second condition for, 71
thermal, 253

Equivalent capacitance, 315
Equivalent optical path length, 478
Equivalent resistance, 349–364
Erg (unit), 85



Exclusion principle, 517
Exponential decay, 526, 530
Exponential functions, in R-C and R-L circuits, 414, 415
Exponents, math review, 555–557
External reflection, 446
Eye, 466, 467

, 32
f stop of lens, 469
Fahrenheit temperature, 208
Farad (unit), 314
Faraday’s Law, 394
Far point, 467
Farsightedness, 466, 467
Ferromagnetism, 387, 394
Field:

electric, 300
magnetic, 373

Field lines, 300, 373
First condition for equilibrium, 59
First Law of Thermodynamics, 253–266
Fission, nuclear, 539
Five motion equations, 16
Flow and flow rate, 197
Fluid pressure, 183
Fluids:

in motion, 197–207
at rest, 183–196

Flux:
magnetic, 394

Focal length:
lens, 455–458
mirror, 434

Focal point:
lens, 455–458
mirror, 433, 434

Foot-pound (unit), 85



Force, 32
and acceleration, 32
centripetal, 126
friction, 33
on current, 375
on moving charge, 373–375
normal, 33
restoring, 157
tensile, 33

Fraunhofer diffraction, 477
Free-body diagram, 34, 37, 38
Free fall, 17, 33
Frequency and period, 125, 157
Frequency of vibration, 157
Friction force, 33, 34, 38, 39, 40, 59
Fundamental frequency, 274
Fusion, heat of, 235
Fusion, nuclear, 539

Galvanometer, 358
Gamma ray, 526
Gas, speed of molecules in, 227
Gas constant, 216
Gas Law, 216
Gas-Law problems, 217
Gauge pressure, 167
Gauss (unit), 375
Gay-Lussac’s Law, 217
Generator, electric, 406
Graphing of motion, 17
Grating equation, 477, 478
Gravitation, Law of, 33
Gravitational potential energy, 86
Gravity:

acceleration due to, 17
center of, 71
Universal Law of, 33



Gray (unit), 539
Greek alphabet, 561
Ground state, 510
Gyration radius, 139

Half-life, 525
Harmonic motion, 157
Heat, 235–245

conduction of, 246
convection of, 247
of fusion, 235
radiation of, 247
in resistors, 343
of sublimation, 236
transfer of, 246–252
of vaporization, 236

Heat capacity, 235, 236
Heat conductivity, 246
Heat energy, 253
Heat engine efficiency, 255
Helium energy levels, 512
Henry (unit), 413
Hertz (unit), 157
High-energy accelerators, 540
Hookean spring, 158
Hooke’s Law, 158
Horsepower (unit), 86
House circuit, 351
Humidity, 237
Hydraulic press, 184, 185, 186
Hydrogen atom, 509–516

energy levels of, 510
Hydrostatic pressure, 183

Ideal gas, 216–226
mean-free path, 228
pressure of, 216



Ideal Gas Law, 216
Ideal mechanical advantage, 100
Image size, 436
Imaginary image (see Virtual image)
Impedance, 424
Impulse, 108

angular, 140
Index of refraction, 445, 452
Induced emf, 394–405

motional, 395
Inductance, 413–422

energy in, 413
mutual, 413
self, 413
of solenoid, 415

Inductive reactance, 424
Inelastic collision, 109
Inertia, 32

moment of, 139
Inertial reference frame, 488
Infrasonic waves, 285
In-phase vibrations, 274, 287
Instantaneous acceleration, 17
Instantaneous speed, 2
Instantaneous velocity, 3, 17
Intensity:

of sound, 285
Intensity level, 287
Interference, 476–487

double-slit, 476, 477
of sound waves, 287
thin film, 478

Internal energy, 253
Internal reflection, 446
Internal resistance, 333
Isobaric process, 254
Isothermal process, 254



Isotope, 525
Isotropic material, 208
Isovolumic process, 254

Jackscrew, 104
Joule (unit), 85
Junction rule, 365

Kelvin scale, 208, 254
and molecular energy, 227

Kilogram (unit), 32
Kilomole (unit), 216
Kilowatt-hour (unit), 86
Kinetic energy, 85, 488, 489

of gas molecule, 227
rotational, 139
translational, 85

Kinetic friction, 33
Kinetic theory of gases, 227–234
Kirchhoff’s Laws, 365–372

Large calorie, 235
Law:

of cosines, 551
of reflection, 433
of sines, 551
of universal gravitation, 33

Length contraction, 490
Lens(es):

combinations of, 458
in contact, 458
equation for, 456, 458
power of, 458
ray diagrams for, 445

Lensmaker’s equation, 458
Lenz’s Law, 395
Lever arm, 70



Levers, 101
Light:

absorption of, 511
diffraction of, 477
emission of, 510
interference of, 476
reflection of, 433–446
refraction of, 445–454
speed of, 445

Light quantum, 499
Limit of resolution, 477
Limiting speed, relativity, 488
Linear momentum, 109–123
Logarithms, 558–560
Longitudinal waves, 273

resonance of, 274
speed of, 274

Loop rule, 365
Loudness level, 286
Loudness of sound, 286
Lyman series, 510

Machines, 100–107
Magnet, 373
Magnetic field, 373

charge motion in, 373–375
lines of, 373
of long straight wire, 375
of magnet, 373
sources of, 373
torque due to, 375

Magnetic field strength, 375
Magnetic flux, 375
Magnetic flux density, 375
Magnetic force:

on current, 375
on moving charge, 373–375



Magnetic induction, 375
Magnetic moment of coil, 387
Magnetic permeability, 386, 394
Magnetic quantum number, 517
Magnification, 436, 466
Magnifying glass, 466, 467
Magnitude, 2
Manometer, 187, 188
Mass, 32

of atoms and molecules, 227
relativistic, 488
and weight, 33

Mass center, 109
Mass density, 172
Mass number, 524
Mass spectrograph, 528
Mean free path, 228
Mechanical advantage, 100
Meters, ac, 423
Metric prefixes, 561
Michelson interferometer, 480
Microscope, 466, 470, 473
Mirrors, 433–444

equations for, 434
ray diagrams for, 434

Modulus of elasticity, 173
Mole (unit), 216
Molecular mass, 216, 227
Molecular speeds, 227
Molecular weight, 216
Moment arm (see Lever arm)
Moment of inertia, 139

of various objects, 140
Momentum:

angular, 140
linear, 109–123
relativistic, 488



Motion:
five equations for, 16
relative, 11

Motion, rotational, 124–138
equations for, 125

Motional emf, 395
Motor, 407
Multielectron atoms, 517–523
Mutual inductance, 413

Natural frequency (see Resonance frequency)
Nature of light, 433
Near point of eye, 466, 467
Nearsightedness, 466, 467
Neutrino, 526, 527
Neutral atom, 517
Neutron, 524, 526
Newton (unit), 32
Newton’s Law of Gravitation, 33
Newton’s Laws of Motion, 32–58
Newton’s rings, 481
Node, 274, 365
Node rule, 365
Normal force, 33, 59
Nuclear equations, 526
Nuclear fission, 539
Nuclear force, 524
Nuclear fusion, 539
Nuclear physics, 524–526
Nucleon, 524
Nucleus of atom, 524
Nutritionist’s calorie, 235

Ohm (unit), 332
Ohm’s Law, 332

ac circuit forms, 424
Opera glass, 474



Optical instruments, 466–475
Optical path length, 478
Orbital quantum number, 517
Order number, 477
Out-of-phase vibrations, 274, 287
Overtones, 274

Pair production, 502
Parallel-axis theorem, 140
Parallel plates, 314
Parallelogram method, 4
Paramagnetism, 394
Parent nucleus, 534
Partial pressure, 217
Particle in a tube, 505
Pascal (unit), 172
Pascal’s principle, 184
Paschen series, 510
Path length, 1
Path length, optical, 478
Pauli exclusion principle, 517
Peak altitude, 18
Peak time, 18
Pendulum:

ballistic, 113
conical, 131
energy in, 92
seconds, 169

Perfectly elastic collision, 109
Period, 157, 159, 160, 273

and frequency, 273
in SHM, 157, 159, 160

Permeability:
of free space, 386
magnetic, 386, 394
relative, 394

Permittivity, 298, 299



Phase, 274
in ac circuits, 424
change upon reflection, 481
in light waves, 476

Photoelectric effect, 499
Photoelectric equation, 499–500
Photon, 499–500
Physical constants, table of, 563
Pipes, resonance of, 279
Planck’s constant, 499–500
Plane mirror, 433
Point charge:

field of, 300
potential of, 313

Poise (unit), 197
Poiseuille (unit), 197
Poiseuille’s Law, 197
Pole of magnet, 373
Polygon method, 4
Positron, 524
Postulates of relativity, 488
Potential, absolute, 313
Potential difference, 313

related to E, 314
and work, 314

Potential, electric, 313–331
Potential energy:

elastic, 158
electric, 313
gravitational, 86
spring, 158

Power, 86
ac electrical, 425
dc electrical, 343–348
of lens, 458
in rotation, 140

Power factor, 425



Prefixes, SI, 561
Pressure, 216, 228

due to a fluid, 183
gauge, 167
of ideal gas, 216
standard, 183
and work, 197

Principal focus, 455
Principal quantum number, 517
Prism, 446
Probability and entropy, 268, 270
Projectile motion, 17, 25

and range, 18
Proper length, 490
Proper time, 490
Proton, 524
Pulley systems, 59, 102, 142, 144

differential, 105

Quality factor, radiation, 540
Quantized energies, 500
Quantum numbers, 517

magnetic, 517
orbital, 517
principal, 517
spin, 517

Quantum physics, 499–508
Quantum of radiation, 499

R value, 246
Rad (unit), 539
Radian measure, 124
Radiation damage, 540
Radiation dose, 539
Radiation of heat, 247
Radioactivity, 525
Radium, 531



Radius of gyration, 139
Range of projectile, 18, 26, 27
Ray diagrams:

lenses, 455, 456
mirrors, 434, 435

RBE, 540
R-C circuit, 413–422

current in, 414
time constant of, 414

Reactance, 424
Real image, 435
Recoil, 112
Reference circle, 159
Reference frame, 488
Reflection, Law of, 433
Refraction, 445–454
Refractive index, 445
Relative humidity, 237
Relative motion, 11
Relative permeability, 394
Relativistic mass, 488
Relativity, 488–498

energy in, 488, 489
length in, 490
linear momentum in, 488
mass in, 488
time in, 490
velocity addition in, 488, 489

Rem (unit), 540
Resistance, 332

temperature variation of, 333
Resistivity, 333
Resistors:

in parallel, 349
power loss in, 343
in series, 349

Resolution, limit of, 477



Resonance, 274
of de Broglie waves, 500, 505
of L-C circuit, 425

Resonance frequency, 274
Rest energy, 489
Restitution coefficient, 109
Restoring force, 157
Resultant, 3, 4, 5
Reversible change, 267
Reynolds number, 198
Right-hand rule:

force on moving charge, 373–375
force on wire, 375
magnetic field of wire, 386
torque on coil, 375, 407

Rigid-body rotation, 139–156
R-L circuit, 413–422
Rocket propulsion, 119
Root mean square (rms) values, 227
Rotation of rigid bodies, 139–156
Rotational kinetic energy, 139
Rotational momentum, 140
Rotational motion:

in a plane, 124–138
of rigid bodies, 139–156
and translation, 140

Rotational power, 140
Rotational work, 140
Rydberg constant, 510

Scalar, 1
Scientific notation, 555
Screw jack, 104
Second Law of Thermodynamics, 267–272
Seconds pendulum, 169
Self-inductance, 413
Series connection, 349



Series limit, 512
Shear modulus, 175
Shear rate, 197
Shunt resistance, 358
SI prefixes, 561
Sievert (unit), 540
Significant figures, 549–550
Simple harmonic motion (SHM), 157–171

acceleration in, 158
energy interchange in, 158
velocity in, 159

Simple machines, 100–107
Simultaneity in relativity, 490
Single-slit diffraction, 477
Sinusoidal motion, 157
Slip ring, 406, 407
Slope, 1, 2, 8, 17
Snell’s Law, 446
Solenoid:

field of, 386, 395
self-inductance of, 413

Sound, 285–297
intensity of, 285
resonance of, 274
speed of, 285

Sources of magnetic fields, 386–393
Space, 2
Special Theory of Relativity, 488–498
Specific gravity, 172
Specific heat capacity, 235

of gases, 236
Spectral line, 510
Spectral series, 510
Specular reflection, 433
Speed, 1, 2, 17

of compressional waves, 275
of gas molecules, 227



of light, 445
limiting, 488
of sound, 285
of waves on a string, 274

Spherical mirror, 433
Spin quantum number, 517
Spring:

constant of, 158
energy of, 158
Hookean, 158, 159
period of, 160
vibration of, 157–160

Standard atmospheric pressure, 183
Standard conditions for a gas, 217
Standing waves, 274
State variables, 267
Static friction, 34
Stationary state, 500
Stefan–Boltzmann Law, 248
Stopping potential, 500
Strain, 172
Stress, 172
Sublimation, heat of, 236
Subtraction of vectors, 5
Sun, energy source of, 542
Superposition principle, 300

Tangential quantities, 125
Telephoto lens, 471
Telescope, 467, 471, 472, 474
Temperature:

coefficient of resistance, 333
gradient of, 246
molecular basis for, 227

Temperature scales, 208, 227
Tensile force, 33, 59
Terminal potential, 333



Tesla (unit), 375
Test charge, 300
Thermal conductivity, 246, 247
Thermal expansion, 208–215
Thermal neutron, 504
Thermal resistance, 246
Thermodynamics, 253–266

First Law of, 253
Second Law of, 267
Zeroth Law of, 253

Thin lens formula, 456, 458
Thin lenses, 455– 465
Threshold wavelength, 500
Time constant:

R-C, 414
R-L, 414

Time dilation, 489
Tip-to-tail, 4
Toroid, field of, 386
Torque, 70, 139, 375, 407

and angular acceleration, 139
axis for, 71
on current loop, 375
and power, 140
work done by, 140

Torr (unit), 183
Torricelli’s theorem, 198
Total internal reflection, 446
Transfer of heat, 246–252
Transformer, 425
Transverse wave, 273
Trigonometric functions, 5

review of, 551–554
Trough of a wave, 273
Twin paradox, 494

Ultrasonic waves, 285



Uniformly accelerated motion, 16–31
Unit conversions, 562
Unit vectors, 6
Units, operations with, 6
Universal gas constant, 216
Universal gravitation, 33
Uranium-235, 541
Uranium–238, 541

Vaporization, heat of, 236
Vector addition:

component method, 6
graphical method, 3
parallelogram method, 4
polygon method, 4

Vector notation, 2
Vector quantity, 2
Vector subtraction, 5
Vectors (phasors) in ac circuits, 425
Velocity, 3

angular, 125
components, 17
of gas molecules, 227, 228
instantaneous, 3

Velocity addition, relativistic, 490
Velocity selector, 377
Venturi meter, 203
Vibratory motion, 157
Virtual image, 433
Viscosity, 197
Volt (unit), 313
Voltmeter, 332

Watt (unit), 86
Wave mechanics, 449–508
Wave motion, 273–284
Wave terminology, 273



Wavelength, 274
relation to velocity and frequency, 274

Weber (unit), 394
Weight, 33, 59

and mass, 33
Wheatstone bridge, 362
Wheel and axle, 103
Work, 85

against gravity, 86
electrical, 314, 343
of expansion, 197
in machines, 100
and P-V area, 255
and rotation, 140
and torque, 140

Work-energy theorem, 86
Work function, 499, 500

X-ray diffraction, 478

Young’s double slit, 476, 477
Young’s modulus, 174

Zeroth Law of Thermodynamics, 253
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